

EOS Service @ CERN

Physics services

EOS Service @ CERN

EOS instances

Cernbox: 9 (5 homes + 3 projects + 1 media)

Physics: 9 (6 LHC, 3 non-LHC)

CTA: 8 (4 LHC, 2 non-LHC, 1backup, 1 internal repack)

QA/PPS: (1 cernbox, 2 eos-physics, 1 ctapps)

2 PB 12 PB 40 PB 2010 2012 2014

Tape Storage Capabilities

The primary purpose of CTA is to provide reliable, long-term archival storage of the custodial copy of the data from all of the physics experiments at CERN.

Successful migration from Castor to CTA

Tape Storage Capabilities

General purpose services

9

Instances

Homes, Projects and Media

2.02 Bill

Number of Files

+24%

220 Mil

Number of Directories

+30%

29.08 PB

Total Space

+9%

Backup in a different technology

General purpose services

EOS for Physics: Numbers

2.67 Bill

Number of Files

+8%

215 Mil

Number of Directories

+13%

514.84 PB

Total Space

+75%

	Total space	Used space	Number of files
ATLAS	94.02 PB	72.43 PB	255 Mil
CMS	72.65 PB	53.47 PB	149 Mil
ALICE	93.63 PB	63.32 PB	690 Mil
LHCb	51.75 PB	14.81 PB	893 Mil
non-LHC	84.66 PB	56.60 PB	390 Mil
ALICEO2	90.57 PB	35.35 PB	219 Mil
TOTAL	487.28 PB	295.98 PB	2596 Mil

Production: ALICE, ALICEO2, ATLAS, CMS, LHCb, and Non-LHC

Dedicated: AMS, ALICEDAQ, EULAKE

Testing/Internal: Pilot, PPs, Backup (not included in the numbers)

EOS for Physics: Activity

EOS served 2.6 ExaBytes of data from the physics instances and 0.5 ExaBytes received

EOS for Physics: Activity

Most used protocol for reads: XrootD or via mounted filesystems (FUSE)

Most used protocol for writes: XrootD followed by GridFTP

EOS for Physics: Availability

EOS for Physics: Service Operations

Continuous improvements of instance monitoring and alerting

Run 3 Preparations

- Great participation (4LHC)
- · Objectives achieved (+ some improvements foreseen)
- No interferences observed
- Plans ahead ☺

Allow external analysis:

- · Inject transfers log data for experiment analysis (Fluent Bit)
- Implemented resource accounting together with IT/CM
- EOS quota monitor

More in-depth testing of new EOS releases in pre-production

- Creation of new test instances (EOSPILOT, **EOSHOMECANARY**)
- Pre-production, experiments testing majority of their work flows on EOSPILOT instance (CMS Tier-0)

EOS for Physics: Service Operations

Continuous HW life-cycle management

Main Challenges 2022

EOS 5 in high availability mode

- Expand erasure coding where possible (Already used in ALICEO2, AMS02 and R&D in EOSCMS)
- Understand, test, and act upon the OS changes

Readiness for RUN3

- EOS5 deployed on all Physics instances
- High availability mode enabled in all Physics instances

Increasing resource usage efficiency

- Final Commissioning with RUN 3
 Hardware
- Streamline the Best Effort support

