

Vamvakopoulos Emmanouil

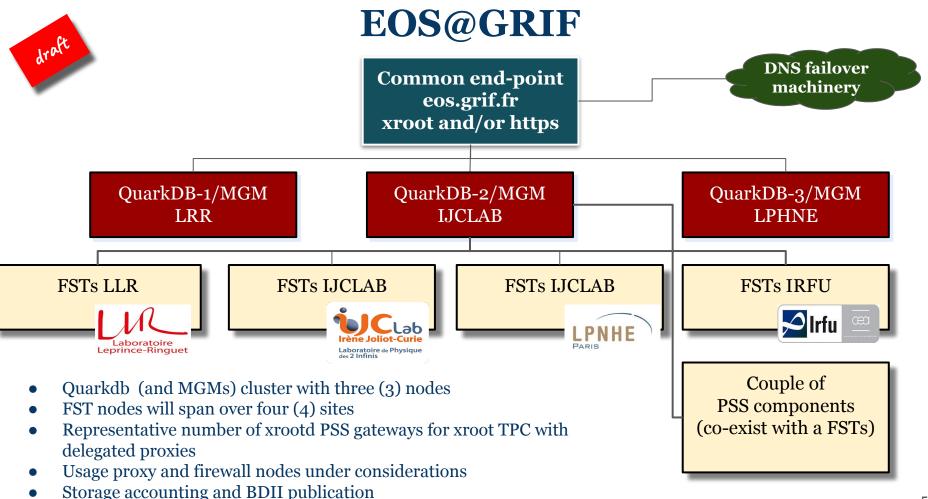
On behalf of Technical Committee at GRIF EOS Workshop 7-10 Mars 2022

CERN

Outline

- Brief description of GRIF's current storage system
- Motivation for Changes
- Context Diagram of future EOS services at GRIF
- Few details on configuration
- Organization of EOS FS and Scheduler Groups on heterogeneous environment
- Plans and milestones

Storage@GRIF for LHC/EGI VO


IR	DPM
Laboratoire	Disk Pool Manager
Leprince-Ringue	t

- **GRIF** is a distributed site made of four (4) different subsites, in different locations of the Paris region.
- **IRFU, LLR** and **IJCLAB** are interconnected with 100Gb link.
- The worst network latency between the subsites is within 2-4 msec
- Four (4) independent DPM instances
- Total Pledges Capacity ~10 PBytes
- Supports four (4) WLCG VOs: Alice, Atlas, CMS and Lhcb + several EGI VOs
- Hardware configuration is mainly storage servers with 10Gbit nics (or more) with direct attached sata disks
- **Data protection based on RAID-6** done by server's controller
- **Quite heterogeneous hardware layout** and hard drive sizes between the sites and servers' generations

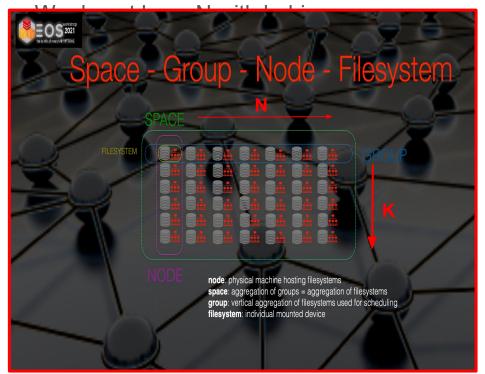
Motivation for changes

- DPM is reaching its end of life soon as a WLCG/EGI service
- GRIF represents a total of ~10 PB but is seen as 4 medium-size sites
 - Avoid duplication of data amongst the subsites (depending on the VO's DDM workflow)
 - Optimum usage of storage resources in a common pool
- Datalakes perspective makes GRIF configuration inappropriate
 - Has the potential to be a major player in a French datalake if it can expose one GRIF endpoint for each VO
- Management not optimal: we can share experience/tools but each subsite has to be managed independently
- Manpower/expertise is not increasing, we need to consolidate our efforts amongst the four subsites
- In addition, work started on a distributed Ceph instance could open the way for more things in common

Installation and Configuration

- Usage of Quattor and Puppet configuration tools for deployment
- IPV4, IPv6 public network
- Firewall Rules
- Grid Certificates key/pair
- Grid General configuration (Pool account, CAs, vomses, edg-gridmapfile)
- EOS rpms repositories (exclude xroot and microhttpd from epel and umd)
- Install EOS and quarkdb rpms
- Keytab secrets and macaroons

- Sysconfing environmental file → /etc/sysconfig/eos_env
- Base EOS configuration files: xrd.cfg.xxx files for fst, mgm and mq
- ssh from MGM to FST without password would be convenient
- Setup of the DNS failover mechanism
- Setup of EOS internals
- And last but not least: monitoring

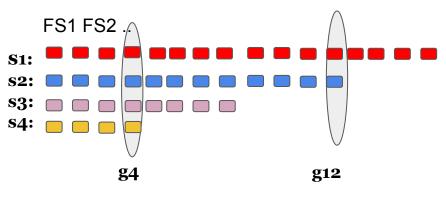

Current capacity plan

- We have heterogeneous distribution of storage capacity over the four (4) sites which depends from
 - Difference of funding streams of each subsite
 - Internal network architecture and cooling capabilities differ at each subsite
 - Different hardware layout due to different purchases campaigns
 - Different # of servers because of the Internal distribution of the WLCG Pledges on top of each site
- With have servers with total attach capacity (from 100TB, 160TB 240TB up to 760TB)
- Indicative number of servers per subsite: 4 server on LPNHE, 11 on LLR, 14 on IJCLAB, 32 on IRFU

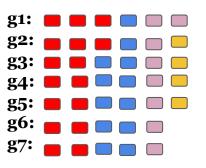
Distribution of Used "space" to be migrated

						FEB 22
	IRFU	IJCLAB	LLR	LPNHE	Total	100 22
ALICE	450TB	966TB	0	0	1,4PB	
ATLAS	1.9PB	1.3PB	0	1.3PB	4,5PB	
CMS	1.5PB	0	1.8PB	0	3,3PB	
LHCB	0	156TB	0	113TB	289TB	

An Ideal Matrix: N server by K Filesystem (of same size)



- On Ideal case we have:
- N servers with **K** individual FS on each server (of the same size)
- Thus we have **K** groups with N filesystem on each group (from N different servers)
- Easy to add a new server of same size (of K individual FS)


EOS and Space Organization

- One eos "space" for the four (4) LHC VO
 - All FSTs will support all the VOs
 - All subsites will support "Filesystems" for all VOs
 - Uniform utilization of the capacity and the server bandwidth (disk and network) as much we can
- Hardware available is not able to support Erasure Code (e.g. physical memory, size and # of the disks
 - Keep the data protection under raid6 and split large (~100-160TB) raid6 volumes on several partitions smaller (FS) partitions
- Try to establish a procedure and organize the FSs in Scheduler Groups according the following requirements :
 - Each FS file system should have the same size of equal size ~20TBytes (easy to manage, respect the limits and marks per FS in Scheduler Logic, load of fsck ?)
 - Each scheduler group should have as much as minimum number of FS's per same server (for fixed group's size this maximize the network and disk throughput)
 - Each scheduler group should have as much the same total capacity in order have an uniform usage of the groups via a round-robin selection.

A non uniform example of EOS File systems Organization

FS1-s1 FS8-s1 FS15-s1 ..

- Let's imagine 4 servers with 16,12, 8, and 4 FS of the same size
- The original organization of FS can not be deployed as we are going to have a group with a non-uniform number of FS
- in total, We have 40 groups
- *k=int(sqrt(40))+1 = 7 (a rule of thumb)*
- Sort the server by the # of filesystems
- Take the server with the largest number of FS and fill cyclically the group table
- And continue to the next one
- At the end, we have a matrix **of k group x k fs** which looks more uniform than the initial one
- We have as much as the minimum *#* of FS from the same server for each group
- We expect that with a larger number of server/fs this will converge better (more uniform groups)
- This procedure is easy to deploy when we add a new FST
- This procedure is not unique

Plan and milestone

- Preparation Phase Q1-2022
 - Functional Quattor and Puppet modules
 - Have a running EOS instance under pre production some SAM test for the four (4) LHC VO + dteam
 - Have a working FTS TPC with https/xrootd for each LHC VO
 - First contact with the four (4) LHC VOs and discuss about the data migration plan
- First data Phase and Preparation Q2-2022
 - \circ ~ Have the final workflow and plan for data migration
 - Start to Migrate at least one (1) LHC VO
 - First version of a local operational guide for EOS documentation
- Second data Phase Q3 & Q4 -2022
 - Data migration of LHC VOs
- Third data Phase Q1-2023
 - \circ $\,$ $\,$ Data migration for non LHC VOs $\,$

Potential risks and mitigations

- Phase Q1 delay by 1/2 a month: not a big impact
- Data migration for large VOs (CMS and ATLAS): may need to do it by subset, not completely clear what the real impact is
 - Spare space for the migration: ~1.5 PB
- Underestimation of the migration time: delayed completion, need of maintain 2 storage services for a longer period
- Small, not really managed, VOs: how to coordinate with them ?

Acknowledgements

Many thanks to EOS developers team for the discussions and the recommendations

Many thanks for yours attention Questions and Comments ?

BACKUP slides

Configuration details

- EOS 5.0.x
 - Mixing nodes with Centos 7 and Centos 8 flavors
- Identical gridmap file along the sites
- Identical pool unix accounts for the VOs
 - Logically we need 2-3 accounts (depending on VO internal DN/proxies usage)
 - VOs, which give access to each user can drive to a large gridmapfile
 - We are not sure if we need the VOMS extension matching or not (?)
 - e.g. http.secxtractor /opt/eos/xrootd/lib64/libXrdVoms.so
 -vomsfunparms:certfmt=pem|vos=atlas,dteam|grps=/atlas,/dteam,/dteam/france|grpopt=10|dbg
 - Plus the vid mapping: DN/voms role \rightarrow User
- Usage of native http(s) xrootd interface only on specific ports
 - Do not use microhttpd interface under decommission
 - EOS_MGM_HTTP_PORT=9000 and EOS_FST_HTTP_PORT=9001
- Looking forward for the redirection from Slave to Master MGM (for xroot and http(s))

EOS@MGM

sec.protparm gsi -vomsfun:/opt/eos/xrootd/lib64/libXrdSecgsiVOMS.so

- -vomsfunparms:certfmt=pem|vos=atlas,dteam|grps=/atlas,/dteam,/dteam/france|grpopt=10|dbg
- sec.protocol gsi -crl:3 -cert:/etc/grid-security/daemon/hostcert.pem -key:/etc/grid-security/daemon/hostkey.pem
 -gridmap:/etc/grid-security/grid-mapfile -d:4 -gmapopt:11 -vomsat:1 -moninfo:1 -gmapto:1
- http.cadir /etc/grid-security/certificates/
- http.cert /etc/grid-security/daemon/hostcert.pem
- http.key /etc/grid-security/daemon/hostkey.pem
- http.gridmap /etc/grid-security/grid-mapfile
- http.secxtractor /opt/eos/xrootd/lib64/libXrdVoms.so
 -vomsfunparms:certfmt=pem|vos=atlas,dteam|grps=/atlas,/dteam,/dteam/france|grpopt=10|dbg
- http.trace all

. . .

- http.exthandler xrdtpc /opt/eos/xrootd/lib64/libXrdHttpTPC.so
- http.exthandler EosMgmHttp /usr/lib64/libEosMgmHttp.so eos::mgm::http::redirect-to-https=1
- mgmofs.cfgtype quarkdb
- mgmofs.nslib /usr/lib64/libEosNsQuarkdb.so
- Mgmofs.qdbpassword mystrongsecret