
Andy Hanushevsky / Michal Simon / Wei Yang

Native XRootD EC

@ SLAC

Andy Hanushevsky / Michal Simon / Wei Yang

02/02/2022 1

Introduction

• XrdEc a high performance scalable EC-based file storage module motivated

by the ALICE O2 use case.

• Originally developed for EOS and recently extended to work with any type of

XRootD backend storage

02/02/2022 2Andy Hanushevsky / Michal Simon / Wei Yang

Highlights

• We use state of the art Intel ISAL Reed-Solomon implementation

• Placement group for the data chunks can be obtained from EOS namespace or vanilla

XRootD redirector

• ZIP is used for bundling data chunks together into stripes

• Each chunk is a separate file within a ZIP archive

• The file header contains information like the crc32, size, etc.

02/02/2022 3Andy Hanushevsky / Michal Simon / Wei Yang

Writing

• Client buffers the data until it has a full block

• The block is divided into chunks

• The chunks are erasure coded

• All chunks (data/parity) are checksumed

02/02/2022 4Andy Hanushevsky / Michal Simon / Wei Yang

Writing

• Each stripe is stored in a ZIP archive, each chunk is a separate file within the archive

Header: crc32, size, etc.

obj.0.0

Header: crc32, size, etc.

obj.1.0

Header: crc32, size, etc.

obj.2.0

Central Directory

Header: crc32, size, offset, name

Header: crc32, size, offset, name

Header: crc32, size, offset, name

Block: 0, Stripe: 0

Block: 1, Stripe: 0

Block: 2, Stripe: 0

02/02/2022 5Andy Hanushevsky / Michal Simon / Wei Yang

Writing

• If the placement group has more locations than the number of data and parity stripes (> n +

m) we choose locations randomly for each block (uniform distribution)

• 4+2 with 8 locations:

• Allows to recover errors on write at spare locations

Data Parity Parity Data Data Data

DataParity Parity Data Data Data

ParityParityData Data Data Data

02/02/2022 6Andy Hanushevsky / Michal Simon / Wei Yang

Reading

• Either the server on open request tells the client to load the EC plugin, or access

through proxy server, again:

• Static configuration: number of data and parity chunks, block size, etc.

• Placement group needs to be discovered dynamically (EOS namespace or through

standard locate request)

• On ZIP open client reads/parses the CD of each stripe

• Afterwards each chunk locations is known

02/02/2022 7Andy Hanushevsky / Michal Simon / Wei Yang

Reading

• There is no need to reconstruct a block for every read

• Unless the client needs to do error correction

• While streaming the data user can benefit from full performance boost due to striping

• In order to verify the checksum the client at minimum needs to read a whole chunk

• Reads are translated into respective chunks

• Chunks are cached until user is accessing data within same block

Data Data Data Data

offset length

Data

offset length

02/02/2022 Michal Simon / Wei Yang 8

Use Case: Alice O2

• 500 EPNs (Event Processing Node), each hosting 4 GPUs, each GPU generating a Time

Frame every 40 seconds

• 2000 data sources in total

• Aggregate throughput of 100GB/s

• A Time Frame (TF) corresponds to a single 2GB file in EOS

• TF has to be copied to EOS in less than 40 seconds

• Data sources transfer data directly to EOS (CERN CC) in (kind of) round robin fashion at

20 ms intervals

• every 20 ms a new file will be created and 2GB of data transferred

02/02/2022 9Andy Hanushevsky / Michal Simon / Wei Yang

Alice O2

02/02/2022 10

6 data servers: 96 HDDs

/ 280MB/s, 4 HBA:

12GB/s, 100 Gb/s NIC

Andy Hanushevsky / Michal Simon / Wei Yang

Use Case: Alice O2

~10% of the target production load, ~10% of the cluster capacity

10+2 layout,

10GB/s of aggregate throughput

(200 streams),

1 hour run, 6 data servers

Avg duration: 974 msec

Avg transfer rate: 2.15GB/s

Transfer rate stdev: 0.418

Transfer duration stdev: 290

02/02/2022 11Andy Hanushevsky / Michal Simon / Wei Yang

Use Case: Alice O2

~20% of the target production load, ~10% of the cluster capacity

10+2 layout,

20GB/s of aggregate throughput

(400 streams),

1 hour run, 6 data servers

Avg duration: 1063 msec

Avg transfer rate: 1.97GB/s

Transfer rate stdev: 0.400

Transfer duration stdev: 244

02/02/2022 12Andy Hanushevsky / Michal Simon / Wei Yang

Use Case: Alice O2

~30% of the target production load, ~10% of the cluster capacity

10+2 layout,

30GB/s of aggregate throughput

(600 streams),

1 hour run, 6 data servers

Avg duration: 1127msec

Avg transfer rate: 1.84GB/s

Transfer rate stdev: 0.317

Transfer duration stdev: 272

02/02/2022 13Andy Hanushevsky / Michal Simon / Wei Yang

Paths to integrate XrdCl+EC with the xrootd storage

1. Mode 1. Use xrootd storage directly as an EC store
○ Xroot protocol and xrootd client (with EC support) only

2. Mode 2. Use XRootD Proxy as gateway to backend storage
○ Enable EC in the proxy’s xrootd client component.

○ EC is invisible to the users

■ They use existing xrdcp/xrdfs, gfal, curl

○ Support all WLCG security, protocols, TPC, etc.

○ The backend xrootd storage is plain and simple

14

This mode is better for user

access

● The rest of the slides are

about this mode

This mode is good for local

administration

02/02/2022 Andy Hanushevsky / Michal Simon / Wei Yang

The Object Store: Xrootd with Erasure Coding (XEC)

Add a xrootd proxy (DTN) cluster

● A xrootd proxy is both
○ a User Facing Xrootd server
○ a xrootd client (talking to “remote”

xrootd storage)
■ XrdCl EC happens at

here.

● Support Object Store functions
○ GET/PUT/DEL/LIST/RENAME
○ HTTP protocol and xroot protocol

● Support all DTN functions used
by WLCG

○ VOMS and token authentication
○ TPC (HTTP and xrootd)
○ Checksum query

● Scale out by expanding the
cluster

d+p & d’+p’

A data server:

The backend

storage:

A plain cluster of

data servers

Xrootd proxy w/ EC (d+p)

for ATLAS

A cluster of EC proxy w/

(d’+p’) for CMS

EC enabled tools/apps for

administrators

● xrdcp, xrdfs, scripts

● filesystem mount

via xrootdfs

Can have d+p & d’+p’ at the

same time because the backend

storage is not aware of EC

XEC 15

XrdCl+EC

XrdCl+EC

XrdCl+EC

02/02/2022 Andy Hanushevsky / Michal Simon / Wei Yang

Interface to users

Nothing changed: users will still work with root(s) or http(s) URL:

● https://atlas.cern.ch:1094/atlas/rucio/user/jdoe/my.data or

● root://atlas.cern.ch:1094//atlas/rucio/user/jdoe/my.data

● Think of “atlas/rucio/user/jdoe” as bucket, folder, whatever you like.

○ Your access permission may be based on top level buckets/folders.

Three sets of tools for GET/PUT/DEL/LIST/RENAME

● xrdcp/xrdfs: work mostly with root(s) URLs

● gfal2: works with both root(s) URL and http(s) URLs

● curl: works with http(s) URLs

1602/02/2022 Andy Hanushevsky / Michal Simon / Wei Yang

Performance test environment

Backend: Xrootd storage:

● 19 nodes of retired Dell R510s, each:

○ 24GB RAM, 1Gpbs NIC, 12x 3TB HDD (some have 11)

○ Each HDD is presented to the OS as its own SCSI device (via LSI RAID controller)

○ CentOS 7, XRootD 5.3.4 (later auto-updated to 5.4.0), xrootd “sss” security

● 312 pre-placed test files (ATLAS data files) ranging from 30MB to 1.1GB, all with

known adler32 checksum

Frontend: Xrootd EC proxy

● 64 core, 128GB, 100Gbps NIC

● CentOS 7, unreleased Xrootd (2021-12-17+patch)

● EC configuration: 8+2, chunk size 1MB (So a block has 8+2 MB)

17

One goal is to reach the hardware limit

02/02/2022 Andy Hanushevsky / Michal Simon / Wei Yang

Single stream performance with xrdcp

Getting the baseline performance numbers using Mode 1

● Run a EC enabled xrdcp, write and read a single ~8GB file.

● Memory to memory (between RAM disk in client node and page cache in Dell 510s)

● Write: 904MB/s (Actual writing speed: 904 * (8+2)/8 = 1130MB/s ← near the line speed)

● Read: 1017MB/s
○ EC doesn’t need to read the parity chunks (unless there is an error)

○ This is a good indication that EC code isn’t the bottleneck in this environment.

Single stream performance by a client, read from and write to storage via the EC proxy (Mode 2)

● Write: 904MB/s ← near the line speed limit (1250MB/s)
○ This is a good indication that EC code and EC proxy setup do not present a bottleneck for writing

● Read:
○ ~155MB/s ← because Xrootd proxy internally break down read request to 2MB chunks

■ It is tunable, to be tested.

○ Add a memory cache in proxy (8MB page size ← to align with EC block size, 1 prefetching): ~505MB/s

■ Memory cache is a feature in Xrootd proxy. Can be turn on if there are sufficient memory

1802/02/2022 Andy Hanushevsky / Michal Simon / Wei Yang

Aggregate read performance by many clients

● Read the pre-placed 312 data files, repeat 5 times
● Spread the read to 150 concurrent clients
● Memory cache clearly helped, it both

○ cache (reduce read from storage)
○ enable large block read (align with EC blocks)

Throughput: View from storage

w/o mem cache w/ mem cache

Network upper limit

● 19 Gbit/s or

● 2.375GB/s

02/02/2022 19Andy Hanushevsky / Michal Simon / Wei Yang

Aggregated Read/Write performance

● By 200 concurrent clients

● Randomly pick 20 files from the 312 sample files

● Read and write back at the same time
○ Note: FS prioritizes write over read

Backend storage

view

● In: write

● Out: read

Memory cache: off

02/02/2022 20Andy Hanushevsky / Michal Simon / Wei Yang

