Enhancing LArTPC BSM search capabilities with low-energy signals

Will Foreman
Illinois Institute of Technology

Snowmass Joint Workshop on New Physics Opportunities with Neutrino Experiments February 11, 2022

Introduction

- LArTPC reconstruction has mostly focused on resolving features at higher energies: ~50 MeV to GeVs
- Relatively less attention given to low energies (~MeV-scale)
- Low Energy Physics in Neutrino LArTPCs (LEPLAr)
 - Coordinating DUNE-centric LE activity spread over multiple working groups
 - Workshop in 2020; white paper in progress

What is a "blip"?

- Compact, spatially isolated, point-like ionization clusters from low-energy electrons (< ~5 MeV) and protons
- Rich physics information contained in blips
 - But challenging to reconstruct

- Several LArTPC-based BSM searches benefit from low-energy blips
 - Millicharged particles
 - SM neutrino trident anomalies
 - Heavy neutral lepton (HNL) decays
 - Dark Higgs decays
 - Dark neutrinos

millicharged particles

- Several LArTPC-based BSM searches benefit from low-energy blips
 - Millicharged particles
 - SM neutrino trident anomalies
 - Heavy neutral lepton (HNL) decays
 - Dark Higgs decays
 - Dark neutrinos

ArgoNeuT searched for blips pointing back to NUMI target

tridents, HNL, dark Higgs

- Several LArTPC-based BSM searches benefit from low-energy blips
 - Millicharged particles
 - SM neutrino trident anomalies
 - Heavy neutral lepton (HNL) decays
 - Dark Higgs decays
 - Dark neutrinos

Di-lepton-like signatures

Standard model v trident

Phys. Rev. D 100, 115029

Opposite charged leptons
No hadronic activity

HNL production via mixing in K⁺ meson decay

Phys. Rev. D 101, 052001

Pion + muon pair No hadronic activity

Heavy scalar / Higgs production via kaon decay

Phys. Rev. D 100, 115039

Pion pair OR muon pair No hadronic activity

tridents, HNL, dark Higgs

- Several LArTPC-based BSM searches benefit from low-energy blips
 - Millicharged particles
 - SM neutrino trident anomalies
 - Heavy neutral lepton (HNL) decays
 - Dark Higgs decays
 - Dark neutrinos

π and μ tracks look similar, but MeV-scale activity near their endpoints can allow for some level of discrimination

tridents, HNL, dark Higgs

- Several LArTPC-based BSM searches benefit from low-energy blips
 - Millicharged particles
 - SM neutrino trident anomalies
 - Heavy neutral lepton (HNL) decays
 - Dark Higgs decays
 - Dark neutrinos

Radius	N _{blip}	E_{blip}	E _{vert}	μ CAR	μ Decay	π CAR
30 cm	> 7	_	_	52%	65%	85%
30 cm	· —	$\geqslant 4 \text{ MeV}$	_	33%	47%	77%
30 cm	> 7	≥ 4 MeV	_	30%	42%	75%
60 cm	> 14	-	-	34%	46%	85%
60 cm	_	≥ 8 MeV	_	22%	44%	78%
60 cm	> 14	≥ 8 MeV	_	21%	33%	77%
60 cm	_	-	> 5 MeV	18%	0%	74%
60 cm	> 14	≥ 8 MeV	> 5 MeV	6.3%	0%	53%

TABLE IV. Selection efficiency for various blip activity and vertex activity cuts for μ^- captures at rest (CAR), decaying μ^- , and π^- CAR. The vertex region is defined by a 5 mm radius sphere centered at the particle's decay or capture point; only blips found outside of this region are considered.

Simple blip energy/multiplicity cuts

 Enable π - capture-at-rest (CAR) samples with statistically enhanced purity

dark neutrinos

- Several LArTPC-based BSM searches benefit from low-energy blips
 - Millicharged particles
 - SM neutrino trident anomalies
 - Heavy neutral lepton (HNL) decays
 - Dark Higgs decays
 - Dark neutrinos

Up-scattered dark neutrino

Two displaced vertices

- Lepton pair
- De-exciting nucleus surrounded by blip activity

distinguishing from v-CC

- Several LArTPC-based BSM searches benefit from low-energy blips
 - Millicharged particles
 - SM neutrino trident anomalies
 - Heavy neutral lepton (HNL) decays
 - Dark Higgs decays
 - Dark neutrinos

Hidden sector physics (HNL, dark photons, dark Higgs) need *not* include large momentum transfer to Ar nucleus.

Blips can distinguish BG v-CC interactions by ID'ing hadronic activity

1π1μ final-states from ν_μ-CC

Summary

- MeV-scale blips have a wide variety of benefits
- Outlined here were several BSM topologies that benefit from effective blip reconstruction
- Efforts in extending reconstruction capabilities down to the MeV-scale are critical for maximizing the physics reach of DUNE and other large LArTPCs