IceCube sterile neutrino searches

Snowmass 2022 - Ben Smithers

Motivations

- Anomalous MiniBooNE nu-e appearance results
- Could be addressed with 3+1 sterile neutrino model
 - Non-interacting flavor states,
 - "Light" mass-squared splitting ~1eV^2
- Many, many, more anomalous results since then

IceCube IceCube Lab **IceTop** 81 stations 324 optical sensors IceCube Array 86 strings including 8 DeepCore strings 5160 optical sensors 1450 m DeepCore 8 strings—spacing optimized for lower energies 480 optical sensors **Eiffel Tower** 324 m 2450 m 2820 m **Bedrock**

- Formally, IceCube Neutrino Observatory
- Array of 5160 light-sensing DOMs instrumented in south pole ice
- More densely instrumented region called DeepCore – sensitive to low-E oscillations
- Sparsely instrumented section sensitive to higher-E oscillations

Event Morphologies

Tracks

- Poorly contained (lower energy resolution)
- Point with certainty (good angular resolution)
- Higher statistics

Cascades

- Relatively easy to contain
- Blob-like (poor angular resolution)
- Low stats, often overlooked for BSM searches

Dominant Oscillations

- High Energies
 - ~500GeV to 10 TeV
 - Whole detector
 - BSM oscillations dominate
 - Both atmospheric and astrophysical
- Low Energies
 - ~5-50 GeV
 - DeepCore
 - Both BSM and regular effects intermingle
 - Atmospheric nu

© Past Analyses

Two Regimes

- High-energy, ~500GeV to 10 TeV, with
 - 8 years of IceCube
 - 305,735 up-going muon neutrino events
 - High-energy cascades analysis on the way
- Low-energy, ~5-50 GeV, with
 - 3 years of DeepCore
 - Approx 5118 events, assorted
 - OscNext, full 8-year analysis with
 ~260k events, coming soon
 - IceCube Upgrade will improve low-E sensitivity with a dense infill

Systematic uncertainties

- High-energy, ~500GeV to 10 TeV
 - Hole Ice, Absorption/Scattering
 - DOM efficiency
 - Barr parameters, atmospheric density
 - Flux normalizations, slope
 - Cross section
 - Kaon energy loss rates

- Low-energy, ~5-50 GeV
 - Hole ice effects
 - DOM efficiency
 - Cross sections
 - Flux normalization, slope
 - nu/anu ratios

Low-E Results (~5-50 GeV)

- Low-Energy DeepCore analysis
- All-flavor, all-interaction, up-going
- Fit to standard nu mixing parameters,

$$\Delta m_{32}^2 = 2.52 \cdot 10^{-3} \text{ eV}^2, \sin^2 \theta_{23} = 0.541$$

- First results consistent with 3neutrino model
- Nuisance parameters fit near nominal values

10.1103/PhysRevD.95.112002

High-E Results (~500 GeV - 10TeV)

- High Energy, matter effect
- Fits to all nuisance parameters
- Closed contour, best fit
 - $\sin^2(2\theta_{24})=0.10$, $\Delta m_{41}^2=4.5$ eV²
- Exclusion contour at 99% CL
- Potentially statistically weak signal hint at 90%CL
- Motivates cross-checking in other channels

- Published in
 - PRD 10.1103/PhysRevD.102.052009
 - PRL 10.1103/PhysRevLett.125.141801

Sterile Decay Sensitivity

- An additional mass, flavor state with decay
- Same 8-year through-going muon sample
- Sterile state with lifetime

$$\frac{1}{\tau} = \Gamma = \frac{g^2 m_4}{16\pi}$$

• Analysis fits to, $\Delta m_{41}^2, \sin^2(\theta_{24}), g^2$ frequentist and Bayesian model comparison

(12) Upcoming analyses

OscNext Analysis

- Full 8 years of DeepCore data
- 5-300 GeV analysis
- 260k events in total
- Multiple sub-analyses
 - In both, $\Delta m_{32}^2, \theta_{23}$ free
 - Analysis II δ_{24} free
- Improved systematic uncertainties
 - Interpolation between GENIE and CSMS DIS cross-sections
 - DOM eff, hole/bulk ice

Tau Appearance

- $\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{\tau}$ resonance expected for non-zero θ_{24}, θ_{34}
- Up-going antineutrinos, passing through the Earth's core
- Leads to muon disappearance, tau appearance
- Potential for cascade appearance, direct tau appearance

Accepted by PRD: arxiv.org/abs/2111.08722

Calculated Sensitivity

- Calculated using public IC effective areas, reconstruction efficiency
- Could discover signatures in v_{τ} appearance
- Simplified systematic uncertainties
 - Flux normalization, shape
 - Ice Absorption/scattering
- Considering both
 - Cascade-only sensitivity
 - Joint track-cascade sensitivity

Probing θ_{14}

- Recent BEST results further support gallium anomaly
- Non-zero $\theta_{14}, \theta_{24}, \theta_{34}$ could lead to similar resonant v_e, v_τ appearance
- Will be able to probe BEST anomaly

Accepted by PRD: arxiv.org/abs/2111.08722

Outlook

- Upcoming IceCube OscNext will improve upon previous 3yr DeepCore analysis
- High-Energy analyses incorporating cascade events
- IceCube poised to make direct tauappearance measurement
- IceCube will be able to probe the BEST anomaly

Thank you for your time! Questions?