Model-Independent Search for sub-MeV Sterile Neutrinos with Superconducting Quantum Sensors

Kyle Leach
Colorado School of Mines

Snowmass Joint Workshop February 11, 2022

The Model Independent Nature of Beta Decay

Decay momentum reconstruction is a simple, model-independent approach to heavy neutrino searches

R. Davis, Phys. Rev. 86, 976 (1952)
R. Shrock, Phys. Lett. B 96, 159 (1980)
G. Finocchiaro and R.E. Shrock, Phys. Rev. D 46, R888(R) (1992)
M.M. Hindi et al., Phys. Rev. C 58, 2512 (1998)

 The process is tremendously simplified for electron capture (EC) since there are only two final bodies that share energy/momentum

Parent Daughter
$$v_e$$

EC Decay

$$T_{d} = \frac{Q_{EC}^{2} + m_{d}c^{4}}{2(Q_{EC} + m_{d}c^{2})}$$

$$T_{\nu} = \frac{(m_{\nu}c^{2} + Q_{EC})(c^{2}(m_{\nu}) - 2m_{d}) - Q_{EC})}{2(m_{d}c^{2} + Q_{EC})}$$

Takeaway: Beta decay provides a sensitive, model independent probe of any new physics in the neutrino sector that couples to their mass states

Neutrino Studies with the Electron Capture Decay of ⁷Be

- ⁷Be is the ideal case for neutrino studies using decay momentum reconstruction.
 - Simple atomic and nuclear structure and largest Q-value (862 keV) of all pure EC cases

Daughter Atom Recoil Kinetic Energy

Superconducting Tunnel Junction (STJ) Quantum Sensing

- Two electrodes separated by a thin insulating tunnel barrier
- Superconducting energy gap Δ is of order $^{\sim}$ meV → High Energy Resolution (~1 eV)
- Timing resolution on the order of μ s, making it among the fastest high-resolution quantum sensors available

 \rightarrow "High" Rate (10⁴ s⁻¹ per pixel)

Can exploit strength of BSM searches with rare isotopes

Josephson Junctions

68 x 68 μm²

~200 nm

***TRIUMF**

The BeEST Experiment

Rare-isotope implantation at TRIUMF-ISAC

K.G. Leach and S. Friedrich, arXiv:2112.02029 (2021) S. Friedrich et al., Phys. Rev. Lett. 126, 021803 (2021)

S. Fretwell et al., Phys. Rev. Lett. 125, 032701 (2020)

Ta, Al, and Nb-based STJ Sensors

High-precision *In-situ* calibration and characterization

S. Friedrich et al., J. Low Temp. Phys. 200, 200 (2020)

Cooling (<0.1 K) and measurement in ADR at LLNL

Phases-I and —II: First Nuclear Recoil Experiments with STJs

Snowmass Workshop

February 11, 2022

Searching for Heavy Neutrinos in the BeEST Data

Sterile neutrino will add a similar spectrum with:

- 1) Shifted recoil energy $\Delta E(m_s)$
- 2) Reduced amplitude $(A \propto |U_{\rho 4}|^2)$

$$f(E) = [1 - A(U_{e4})] f_0(E) + A(U_{e4}) f_0(E - \Delta E)$$

Background:

Active neutrino contribution + other background

Signal:

Sterile neutrino contribution

 f_0 = EC spectral shape with active neutrinos

Slide Courtesy: Geon-Bo Kim (LLNL)

First Limits from BeEST Phase-II Data

• Phase-II data from a single 138x138 μm^2 STJ counting at low rate (~10 Bq) $_{10}^{-2}$

Recoil spectrum generated by pseudo-degenerate mass states from ~28 days of counting

Simultaneously acquired laser calibration spectrum

Example of signal that would be generated by 300 keV neutrino with 1% mixing

• Up to an order of magnitude improvement for limits on heavy neutrino admixtures to v_a for masses of 100 - 850 keV

S. Friedrich et al., Phys. Rev. Lett. 126, 021803 (2021)

Atom-by-Atom Characterization of the BeEST

The sensitivity of our experiment (and technique in general) is currently limited by our understanding of where the atoms we implanted are, and how they interact with the detector

> THE GOAL: Create an atom-by-atom map of the detector "How does Be location in the matrix affect binding and emission energies?"

- Materials imaging done at Mines, Berkeley, and LLNL
- DFT quantum simulations performed at LLNL using the supercomputers to map material-dependent energies

A. Samanta, D. Diercks, S. Friedrich, C. Harris, K.G. Leach, and V. Lordi (2021)

Phases of the BeEST Experiment

Phase-IV

Operation of 128-Pixel Arrays of Al-Based STJs in Dilution Refrigerator

Phase-III

2021

Scaling to 36- and 112-Pixel Arrays of Ta-Based **STJs**

2025

2022

Phase-II

First Limits and Precision **Device Characterization**

• J. Low Temp. Phys. **200**, 200 (2020)

2020

• PRL 126, 021803 (2021)

Phase-I

Proof of Concept

- PRL **125**, 032701 (2020)
- arXiv:2112.02029 (2021)

2018

Projected Limits of the BeEST Experiment

Beyond the BeEST – 10,000 Pixel Hf-Based Experiment

Resolution

6 eV

1 eV

0.2 eV

Run Time

30 days

100 days

1000 days

Snowmass Workshop

February 11, 2022

K.G. Leach – the BeEST Experiment

Count Rate

10 cps

1000 cps

3000 cps

ν Mass

>100 keV

>10keV

> 5keV

ν_s Admixture

~1e-4

<1e-6

<1e-9

Slide courtesy S. Friedrich (LLNL)

Detector

1 Ta STJ pixel

10 000 Hf STJs

100 Al STJs

Time

Now

5 years

10 years

Conclusions

- The Beryllium Electron capture in Superconducting Tunnel junctions (BeEST) experiment uses momentum reconstruction in the EC decay of ⁷Be to search for heavy neutrino mass states (sub-MeV).
- Phase-II of the experiment uses only a single Ta-based STJ counting at 10 Hz for 28 days to acquire the first low-statistics data set.
- These first limits using this approach are up to an order of magnitude more stringent than all previous model-independent decay-based measurements in the 100 860 keV range
- This method is a model-independent approach to heavy neutrino searches that is complementary to future efforts using nuclear decay of ³H (KATRIN, Project 8), ¹³¹Cs (HUNTER), and ¹⁶³Ho (ECHo, HOLMES) to provide high-sensitivity searches from the eV to MeV scale.

The BeEST

Connor Bray

David Diercks

Spencer Fretwell

Cameron Harris

Kyle Leach

Drew Marino

Sergio Oscar Nuñez Silva

Leendert Hayen

Robin Cantor Ad Hall

Stephan Friedrich Geon-Bo Kim Vincenzo Lordi Amit Samanta

Annika Lennarz Peter Machule Dave McKeen Chris Ruiz

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Pedro Amaro Mauro Guerra Jorge Machado José Paulo Santos

Faculty/Staff
PDF
Graduate
Undergraduate

Adrien Andoche
Paul-Antoine Hervieux

Francisco Ponce

Xavier Mougeot

Jens Dilling

te EMPIR initiative is co-funded by the European Union's Horizon

K.G. Leach – the BeEST Experiment

Snowmass Workshop

February 11, 2022

The BeEST

K.G. Leach – the BeEST Experiment

Snowmass Workshop

February 11, 2022