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Antineutrinos from Nuclear Reactors

Nuclear reactors are an important part of the international neutrino | HEP Physics Opportunities Using Reactor Antineutrinos
program and connect to a number of NF topical groups: NFO1,

NFO2, NFO3, NFO5,

NFO7, NFO9, NF10.

The reactor community has been working on a comprehensive

White Paper to summarize the importance of reactors to neutrino

physics specifically and to the broader US HEP program.

| can only dedicate time to a small part of a much larger whole:
using nuclear reactors to search for nonstandard oscillations,
particularly sterile neutrinos [1-4].
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Antineutrinos from Nuclear Reactors

Nuclear reactors are an important part of the international neutrino | HEP Physics Opportunities Using Reactor Antineutrinos

program and connect to a number of NF topical groups: NFO1,
NFO2, NFO3, NFO5, NFO7, NFO9S, NF10.

The reactor community has been working on a comprehensive
White Paper to summarize the importance of reactors to neutrino
physics specifically and to the broader US HEP program.

| can only dedicate time to a small part of a much larger whole:
using nuclear reactors to search for nonstandard oscillations,
particularly sterile neutrinos [1-4].
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The Reactor Antineutrino Anomaly

In 2011, short-baseline reactor experiments were
reinterpreted [5] with updated predictions for the
antineutrino flux [6,7] — and came up 5.7(2.3)% short! This is
the Reactor Antineutrino Anomaly (RAA). This can be
interpreted as modest evidence in favor of a sterile neutrino.

The antineutrino fluxes have been intensely scrutinized.
Models based on different techniques [8,9] disagree in the
level of discrepancy — but recent measurements from
Kurchatov Institute (Kl) [10,11] imply that these may be
starting to converge.

A recent study [12] has explicitly calculated the severity of
the RAA for several flux models and finds that

A. flux models based on modern data imply no significant
deficit, and

B. there still exists room for a nonstandard contribution at
the level ~5-10%.

The punchline: the RAA is not quite dead, but it's probably
on life support!

G. Mention et al., arXiv:1101.2755; C. Giunti et al., arXiv:2110.00682
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Reactor Spectral Ratios
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That said, anomalous ve appearance at LSND and
MiniBooNE can be interpreted as indications of new
oscillations at the €V scale. This hypothesis can be
more robustly tested at reactors using ratios of
measured spectra at short baselines (L = 25 m).

Prior to 2021, combined analyses of spectral ratios
yielded =30 hints of nonstandard oscillations [13-16].

However, a combination of more data from more
experiments and improved statistical methods [1/-20]
Implies that this is more appropriately =1oc — which is

obviously quite a bit less!

Therefore, reactor spectral ratios place a strong
constraint on sterile-neutrino interpretations of LSND
and MiniBooNE!
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The Status of ve Disappearance Searches

Here’s a full(ish) picture of ve disappearance: 10? ———rrrrm—
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another! This tension amounts to =30 [20]. _

o« KATRIN [25] constrains the high-Am?4; space (z 20 eV?) — the
gallium region is under even more tension!
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Adapted from JMB et al., arXiv.2111.12530; to appear in White Paper
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Here’s a full(ish) picture of ve disappearance:

e Reactors are fully consistent with solar experiments [21] — push
towards smaller values of sin? 2v...

e Reactors are also fully consistent with anomalous signal from BEST
[22-24] and other gallium experiments — push towards larger Am?24;.

e Clearly, solar and gallium experiments are quite unhappy with one
another! This tension amounts to =30 [20].

o« KATRIN [25] constrains the high-Am?4; space (z 20 eV?) — the
gallium region is under even more tension!

e Also some pressure from ve—12C scattering, T2K and MicroBooNE;
these are a bit more complicated to interpret because they receive
Vu contributions.

e By the way, cosmology is very unhappy for sterile neutrinos to exist
In this range of masses and mixings [26].

A coherent explanation of the anomalies has yet to emerge, but it’s clear
that 3+1 doesn’t cut it!
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Looking to the Future

What else could possibly explain the anomalies? More broadly, what is it about nuclear reactors that makes them

o Additional sterile species? well suited to study neutrino physics, both new and old?
e Decay of the sterile neutrino? A. They’re a flavor-pure source of (anti)neutrinos.
o« Nonstandard interactions? B. They’re (largely) uninfluenced by matter effects, even at (and

bevond) medium baselines.
e Coupling to hidden sector/dark matter? yond)

Assuredly many, many others! C. The low energies allow oscillations to develop more
o J °

prominently over shorter distances, and make the final
Aside from the existing anomalies, what other states relatively simple to characterize.

(new) physics scenarios can be probed with D. They’re relatively inexpensive — the reactors are built for

? .
reactors: other purposes (e.g., power generation), so one really only
e Decoherence of the neutrino wave packet needs to procure a detector.
[27-29]

o Violation of CPI, Lorentz invariance [30,31]  These features have made — and will continue

e gz@] existence of large extra dimensions to make — reactors an important piece of the

. Again, many others! overall puzzle of neutrino physics!
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