Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform

Fernanda Psihas

Andrew Mastbaum Fernanda Psihas Joseph Zennamo

lakeaways

Liquid Argon doping can enhance the physics program of next generation LArTPC in a variety of ways. We explore this and other modifications that would enhance physics reach of LArTPCs and open R&D opportunities.

Doped LArTPCs concept expands the LArTPC physics capabilities to search for neutrino less double beta decay.

This concept opens **several R&D questions** with applications to the next generation physics program and future detector technologies.

Measurement & energy resolution

Signal is 2 electrons with energy = $Q_{\beta\beta}$

LARTPO ENERGY RANGE

Much lower energies than the nominal LArTPC physics program.

Compatible with possibilities to expand DUNE's reach into the low energy regime.

Xe-Doped LAr Goals

To enhance LArTPC reach for low energy physics.

To enable neutrino-less double-beta decay searches in LArTPC

Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform. A. Mastbaum, F. Psihas, J. Zennamo. (soon on the arxiv)

BASIC CONCEPT:

Dope LAr with ¹³⁶Xe, a Ovββ candidate isotope

Add photo-sensitive dopants to improve energy resolution

Xe-Doped LAr Goals

To enhance LArTPC reach for low energy physics.

To enable neutrino-less double-beta decay searches in LArTPC

Mitigate low E Backgrounds

Resolve a 2.5MeV Signal

Dope with 100s of tons of 136Xe

WHAT WOULD NEED TO BE MODIFIED?

WHAT R&D QUESTIONS DOES THIS OPEN?

BACKGROUNDS THE KILLERS:

- 1 Radioactivity
- ² 42K From the 42Ar decay
- ³ Environmental Neutrons

WHAT WOULD NEED
TO BE MODIFIED?

BACKGROUNDS THE KILLERS:

- 1 Radioactivity
- ² 42K From the 42Ar decay
- ³ Environmental Neutrons

WHAT WOULD NEED
TO BE MODIFIED?

BACKGROUNDS THE KILLERS:

- 1 Radioactivity
- ² 42K From the 42Ar decay
- ³ Environmental Neutrons

WHAT WOULD NEED
TO BE MODIFIED?

Low-radioactivity argon*

*similar to what could enable dark matter searches E. Church et. al., *JINST* 15 (2020) 09, P09026

Capozzi, et. al., Phys.Rev.Lett. 123 (2019)

THE KILLERS:

- Radioactivity
- 42K From the 42Ar decay
- **Environmental Neutrons**

E. Church et. al., JINST 15 (2020) 09, P09026

BACKGROUNDS HONORABLE MENTIONS

BACKGROUNDS AND ENERGY RESOLUTION

Energy resolution is a crucial component of this concept. Eres < 5% is essential to reduce the $2\nu\beta\beta$ background.

OW MUCH LIGHT DO WE NEED

NEST[*] models the microphysics of energy deposits in noble liquids and gases.

Explored the energy resolution for 1 MeV electrons in LAr for detectors with various efficiency and noise conditions

Achieving the best possible energy resolution need to collect at least 6000 photons per MeV

> [*] Noble Elements Simulation Technique, http://nest.physics.ucdavis.edu/

Less noise in charge readout

Traditionally light collected at anode plane

DUNE FD Module 5,600 cm by 1,200 cm

Increasing light collection on large LArTPCs is a challenge:

- Scintillation photons have to travel large distances.
- Low photon detection coverage by design.

The best light collection efficiency has been accomplished on SBND

Best LArTPC

Light collection >. 160 photons/MeV << 6000 photons/MeV

Journal of Physics: Conf. Series 888 (2017) 012094

PHOTOSENSITIVE DOPANTS

The most commonly used have ionization energies of 7-9 eV: Tetramethylgermane (**TMG**), (CH₃)₄Ge, Trimethylamine (**TMA**), N(CH₃)₃, Triethylamine (**TEA**), N(CH₂CH₃)₃

Small test stands explored a variety of chemicals and found an increase in charge for highly scintillating particles **Equivalent to collecting 40%** of the light produced.

Implies 10,000 photons/MeV for MeV-scale electron signals

Simulated Event in Pure LAr

Courtesy of Ivan Lepetic

)NGOING H&I

Use radioactive sources to explore improvements with dopants on two fronts:

Small-scale: Use a small pixelated LArTPC with y-sources to measure energy in different doping scenarios

Status: Assembly has begun at Rutgers.

Large-scale: Adding radon source to MicroBooNE

Status: Data taking started this summer!

*Work supported by an FNAL New Initiatives **Grant and the FNAL Neutrino Division**

ELATED SNOWMASS WHITEPAPERS

IF08: Executive Summary on Enhancing and combining existing modalities to increase signal-to-noise and recon fidelity: Increasing Light Collection"

IF08: Executive Summary on Challenges in scaling technologies: Sourcing/purifying noble gasses

NF10: Neutrino Detectors White Paper

Low Energy Physics in Liquid Argon (LEPLAr)

SUMMARY

This doped LArTPC concept could extend the physics program of future LArTPCs with sensitivities to $0\nu\beta\beta$ decay as low as $m\beta\beta$ ~ 2meV at the DUNE scale.

This concept employs Xe-doping, photosensitive dopants, depleted argon, and an external overburden compatible with other low energy physics concepts for LArTPCs.

Coming to the arxiv very soon

CAPABILITIES OF THIS DOPED LARTPC CONCEPT

Higher charge-to-light ratio

<5% energy resolution at the ~MeV scale

Lower energy thresholds

Higher efficiency for low energy nuclear recoils

What other low energy physics can we enable with this concept?