RD50-MPW3 as example for “Depleted Monolithic Active Pixels Sensors”

Patrick Sieberer
DMAPS Projects - Overview

<table>
<thead>
<tr>
<th>Project</th>
<th>ALPIDE</th>
<th>MALTA</th>
<th>Monopix</th>
<th>RD50-MPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Experiment</td>
<td>ALICE</td>
<td>ATLAS/RnD</td>
<td>RnD, Belle2</td>
<td>RnD</td>
</tr>
<tr>
<td>Comment</td>
<td>Very first DMAPS integrated into full detector system. Baseline for MALTA and Monopix</td>
<td>CERN-EP’s main development</td>
<td>Use case: OBELIX chip as future option for Belle2 tracker upgrade. Hephy heavily involved in design!</td>
<td>This talk.</td>
</tr>
<tr>
<td>Foundry</td>
<td>TowerJazz</td>
<td>TowerJazz/LFoundry</td>
<td>TowerJazz/LFoundry</td>
<td>LFoundry</td>
</tr>
<tr>
<td>Picture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td>Click</td>
<td>Click</td>
<td>Click</td>
<td>-</td>
</tr>
</tbody>
</table>

Non-comprehensive list!
• CERN-RD50 collaboration
 – Radiation hard semiconductor devices for very high luminosity colliders
 – >400 people
 – 63 institutes
• CERN-RD50 CMOS Working Group
 – Program to study and develop monolithic CMOS sensors with
 • High granularity & high radiation tolerance
 • LFoundry 150nm HV-CMOS
 – Our program includes
 • TCAD simulations
 • ASIC design
 • DAQ development
 • Performance evaluation
 – Hephy Manpower
 • Thomas Bergauer
 • Christian Irmler
 • Helmut Steininger
 • Patrick Sieberer (PhD)
 • Bernhard Pilsl (Master student)
 • Klemens Flöckner (previous master student)
CMOS transistors for electronics inside a shielded well
Bulk of the wafer used as sensor
• 3 Depleted Monolithic Active Pixels Sensors (DMAPS) designed so far
 – submission dates in timeline, chip delivery ~5 months later
• All of them in LFoundry 150nm process
• High resistivity substrates (up to ~2kOhm*cm)
• Hephy started in RD50 in 2017
Digital performance in a telescope

- Digital logic in FPGA
- Synchronization with other detectors possible
- Data rate rather low (only one pixel can be activated)
- Tracking possible, but limited capabilities (single pixel)
- Lot of lessons learned for RD50-MPW3

Irradiated chips tested with Sr90
- Efficiency decreasing for higher fluence (radiation damage)

Testbeam MedAustron

- Simulation a) and testbeam measurements at 800MeV b) and 175MeV c) for a ‘switched reset pixel’
- Pulse width of signal independent of beam energy
- Testbeam results agree with simulation
- Analog pixel design taken from RD50-MPW2
 - Matrix design by Liverpool
- Complete new design of digital periphery
 - Covering ~15% of total area
 - Hephy did ~80% of the work
 - See next slide
 - Chip submitted in December 2021
 - Expected delivery ~April/May 2022
• State of the art commercial design tools
 – Cadence, Synopsis, Mentor/SiemensEDA
 – Affordable licenses from Europractise (EU funded project)

• Process Design Kit (PDK)
 – Provided by foundry
 – General process aspects (number of metal layers, design rules (spacing + thickness of metal wires), available implants, …)
 – IP-blocks: Pre-designed logic cells (Flipflops, logic gates, …), memory cells, … including timing libraries for timing verification
 – NDA (Non disclosure agreement) 😞 is mandatory to receive PDK
Functional Model
- Non synthesizable Verilog code
- Short code to develop main functionalities

RTL
- Synthesizable Verilog code

Synthesis
- Verilog matched to generic digital block
- Generic blocks mapped to physical blocks from PDK
- Logic optimization

Floorplan
- Write floorplan
- Write powerplan

Powerplan

Placement
- Placement of logic cells

Clock Tree
- Write timing constraints
- Clock tree synthesis (Placement + Routing of clock buffers)

Routing
- Detailed routing of logic cells
- Write out GDSII

Verification
- LVS/LEC (Logic vs Schematic, Logic equivalence check):
 Compare original netlist with final, layouted chip
- DRC (Design Rule check): Verify certain physical rules from foundry
 (metal density per plain, minimum distance, ….)
RTL to GDSII Design Flow

Functional Model
- Non synthesizable Verilog code
- Short code to develop main functionalities

RTL
- Synthesizable Verilog code

Synthesis
- Verilog matched to generic digital block
- Generic blocks mapped to physical blocks from PDK
- Logic optimization

Floorplan
- Write floorplan

Powerplan
- Write powerplan

Placement
- Placement of logic cells

Clock Tree
- Write timing constraints
- Clock tree synthesis (Placement + Routing of clock buffers)

Routing
- Detailed routing of logic cells
- Write out GDSII

Verification
- LVS/LEC (Logic vs Schematic, Logic equivalence check): Compare original netlist with final, layouted chip
- DRC (Design Rule check): Verify certain physical rules from foundry (metal density per plain, minimum distance,)

- Incoming data stream (to FPGA)
- High speed data path
- Low speed data path (Monitoring)

Caribou used as DAQ
- AIDA2020 TLU connected to CaR-board for triggering
- 2-level chipboard to readout 2 chips with one setup
- 2 data paths (next slide)
Summary

- RD50-MPW2 very successful chip
 - Analog performance increased a lot compared to RD50-MPW1
- RD50-MPW3 submitted for fabrication in December 2021
 - Analog pixels electronics from RD50-MPW2
 - New digital periphery
- DAQ Design (Hardware, Firmware and Software) of RD50-MPW3 ongoing
 - No show stoppers seen so far
 - Ultimate goal is to build a small telescope demonstrator

Outlook/ToDo

- Triggering/Synchronization with other detectors
 - Preparation for testbeams at CERN + MedAustron
- Firmware development (ongoing)
- Software verification framework
 - Generates dummy data, which is fed into digital logic of the chip, processed using the RTL code, analyzed in software framework
- Simulations of whole detector system
 - TCAD used for E-Field
 - Allpix2 used for Monte Carlo studies
RD50-MPW2
- TCT and eTCT on passive test structures and active matrix
- Timing performance dependence on decreasing laser power as expected:
 - ToT decreases
 - ToA increases
- Rough calibration ToT \rightarrow electrons available
- For details, see B. Hiti at 38th RD50 workshop (presented by S. Powell)

- Irradiation campaign up to $2\times10^{15}\text{N}_{\text{eq}}/\text{cm}^2$
- Sr90 tests: Decrease in pixel efficiency seen
- “L” shape at edges observed
 - Might come from biasing scheme
 - Not fully understood

Measurements with Sr90 source (only done for lower irradiated chips)
• Testbeams at medical facilities
 – Ruder Boskovic Institute (HR)
 • See talk from R. Palomo at 39th RD50 workshop
 – Rutherford Cancer Center (UK)
 • See talk from S. Powell at 38th RD50 workshop
 – MedAustron (AT)
• Analog performance
 – Pulse width at various beam energies
• Digital performance in a telescope
 – Digital logic in FPGA
 – Synchronization with other detectors possible
 – Data rate rather low (only one pixel can be activated; analog only chip!)
 – Tracking possible, but limited capabilities (single pixel)
 – *Lot of lessons learned for RD50-MPW3*

• Simulation a) and testbeam measurements at 800MeV b) and 175MeV c) for a ‘switched reset pixel’
• Pulse width of signal independent of beam energy
• Testbeam results agree with simulation
• RD50-MPW1 suffered from high leakage current and low breakdown voltages
• TCAD studies done => RD50-MPW2 as analog-only chip
 – Performs really well (I_{leak}, V_{BD})
 – Detailed tests including timing studies with lasers and testbeams (analog + digital performance)

See talk by M. Franks at 36th RD50 workshop
• LFoundry 150nm process
• Different Wafer resistivities and fluences available
• Passive test-structures 1)
• Active matrix of DMAPS pixel, including analogue readout 2)
• SEU tolerant memory array 3)
• Bandgap reference voltage 4)
• Test structures with SPADs 5)
• Details on 3) and 4): See talk from R. Marco Hernandez at 36th RD50 workshop
• Details on 1): See talk from M. Franks at 36th RD50 workshop or from R. Marco Hernandez at VERTEX 2020
Switched Reset Pixel

Continuous Reset Pixel
DESIGN OF RD50-MPW3
• Analog pixel design taken from RD50-MPW2
 – 64 x 64 pixels
 – Pixel size 62µm x 62µm
 – Active area: 3.968mm x 3.986mm
 • Total Size: 5.1mm x 6.6mm
• Digitization in each pixel
 – FEI3-style
 – Increase of pixel size necessary
 60µm x 60µm (RD50-MPW2) to
 62µm x 62µm (RD50-MPW3)
• Complete new design of digital periphery
 – Covering ~15% of total area
 – Focus of this talk

First draft of documentation available
• Pixels read out in double columns (DCOLs) with shared digital busses to reduce routing congestions

• Each pixels receives a global (chip-internal) timestamp and returns
 – 8bit leading edge
 – 8bit trailing edge
 – 8bit pixel address

• 8 flip-flops plus logic for configuration implemented in each pixel
 – All pixel from DCOL connected to a shift-register
 – Read-back is possible
 – Not shown in figure below

• Overview of the functionalities of the matrix can be seen in Development of High Voltage-CMOS sensors within the CERN-RD50 collaboration (E. Vilella, VERTEX2021, submitted to NIM-A)

In-pixel readout logic (FEI3 - style)
DIGITAL READOUT IMPLEMENTATION
• One End-Of-Column (EOC) per DCOL
 – Configuration of pixels
 – Pixel data readout + 32 words deep buffer
• Transmission Unit (TX Unit) for data transmission
 – 128 words deep buffer (FIFO)
 – Framing
 – Encoding (Aurora 8bit-10bit)
 – Serialization (Serial stream at 640MHz)
• Control Unit (CU) for reading out EOC buffers
 – Controls data propagation from EOCs to TX Unit
• Global Timestamp (TS) Generator
 – 8bit, running at 40MHz
 – Gray-encoded to minimize activity on bus
• Clock and Reset Generator
 – Dividing a fast (640MHz) clock into a 40MHz clock
 – Clock multiplexer for optional external 40MHz
 – Synchronizing the 2 external reset signals with clock
• I2C to wishbone module
 – Converts external I2C signals to internal wishbone control signals
Usually implemented in separate clock domain (16MHz)

Clock Domain Crossing (CDC)

- Usually, internal clocks are generated using a PLL
 - Not available, complex to design
- Internal 40MHz used
 - Generated by a divider from external 640MHz
- Special enable signal (EN, shown below) generated with 640MHz clock
 - 2 different cases, but always exactly 1 rising edge of 40MHz clock within high level of enable
 - Special attention to constraints and clock tree needed

Internal Buffers

- 2 stage FIFO chain
 - 32 words deep in each DCOL
 - 128 words deep in TX Unit
 - Less high speed buffers in FPGA required

Monitoring

- 10 monitoring outputs for internal signals

External Control

- Parts of internal logic can be controlled with external signals for debugging

Timing of enable signal (EN)
Matrix Readout and Control – End Of Column (EOC)

1 DCOL of Matrix

LE, TE, Pixel - Address (8 bit each)

SER IN

SER OUT

MUX 128 to 1

8 bits per register

Conf_reg_Pix0
Conf_reg_Pix1
Conf_reg_Pix2
Conf_reg_Pix3
Conf_reg_Pix4
Conf_reg_Pix5
Conf_reg_Pix6
Conf_reg_Pix7
Conf_reg_Pix8
...
Conf_reg_Pix15
Conf_reg_EOC

FIFO (24 bit * 32)

Token Handler

DATA OUT REG (32 bit)

EOC address

next token

previous token

Output Pad

TS

Wishbone-Bus

Wishbone - Bus

Patrick Sieberer
4.03.2022
Novelties of RD50-MPW3

Pattern registers

MUX

DATA
32bit from TX-FIFO

SOF/EOF/DEBUG
32bit each

IDLE
32bit

1 bit
k_char

SEL register

Comb. encoding

encoder output register

8bit-10bit Encoder

Serializer
(640MHz)

shift register

DATA-OUT (1bit)

Finite State Machine (FSM)

IDLE
32bit

DATA
32bit from TX-FIFO

Patricia Sieberer

4.03.2022
CONCEPTS RD50-MPW3 DAQ
Data Flow and Software

<table>
<thead>
<tr>
<th></th>
<th>Fast data path</th>
<th>Slow data path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Data taking</td>
<td>Monitoring, Spy Data (small percentage of data)</td>
</tr>
<tr>
<td>Data flow</td>
<td>SFP port + UDP (Jumbo frames) for fast, firmware-controlled readout</td>
<td>AXI Bus + Ethernet network for monitoring and slow control</td>
</tr>
<tr>
<td>Data storage</td>
<td>Integrated into EUDAQ (EUDAQ raw data files)</td>
<td>EUDAQ + custom data storage possible, Handling of slow control commands</td>
</tr>
<tr>
<td>Usage</td>
<td>• data transmission + storage only</td>
<td>• Slow control commands</td>
</tr>
<tr>
<td></td>
<td>• easy integration to tracking framework Corryvreckan</td>
<td>• Monitoring</td>
</tr>
<tr>
<td></td>
<td>• Testbeam</td>
<td>• Standalone tests at laboratory</td>
</tr>
<tr>
<td>Current development efforts (examples)</td>
<td>Loopback speed-test at 640MHz implemented</td>
<td>Draft of online monitor:</td>
</tr>
<tr>
<td></td>
<td>• Dummy data generated in FPGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Data sent to CaRboard, loop-back over FMC connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Data read by FPGA + sent over UDP to PC (850Mbit/s data rate achieved)</td>
<td></td>
</tr>
</tbody>
</table>
TRIGGERING RD50-MPW3
AIDA-TLU with 2 possible DUT interfaces:

- **EUDET Mode**: Needed for Hephy-telescope and many other older telescope
 - Whenever no (fast or “synchronizable”) internal TS is available in the telescope

- **AIDA Mode**: Needed for RD50-MPW3 and newer telescope (probably at CERN)
 - Whenever internal TS-synchronizing is possible
 - Much faster than EUDET
• TLU has two internal, fast FIFOs
 – Trigger Number (TN), 15 bit
 – Fast timestamp (TS-T = TimeStamp-TLU), up to 160MHz, ~16 bit (coarse and fine(?)

• For the EUDET mode, the TN written on the DUT interface after every trigger
 – Trigger input from scintillators needed

• For AIDA mode, TS-C and TS-T are synchronized at the beginning of each run with a special signal on the DUT interface
 – TLU and RD50-MPW3 now have the same TS!

• **EUDAQ Producer available, which reads the two FIFOs of the TLU to match TN with a TS-T (and thus also TS-C)**
 – Event matching must be done offline
 – Data readout over the IPBus, up to **50MHz trigger rate** possible (otherwise, FIFO-overflow)
 • This determines our max. particle rate we can handle (!)