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• Ising model and Landau theory

• Fluctuations and critical exponents

• Approaches to the critical point

• Connections to the experimental programmes
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• Symmetries of the QCD Lagrangian

•  symmetry of a purely gluonic system and the Polyakov loop 

• Chiral condensate as an order parameter 

• Universality class of the chiral phase transition

• The Columbia plot

• The sign problem in QCD and the realistic walk arounds.
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Phase transitions

Critical phenomenon
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SQCD = ∫ d4x [ 1
4g2

Gk
μνG

μν
k + ψ̄γμDμψ + ψ̄mψ]

α = 1,2,3,4

a = 1,2,3

f = u, d, s

The QCD action is given by an integral over the spacetime of the QCD Lagrangian

 are fermionic fields with three indices ψαaf

Direct indices : 

Colour Indices: 

Flavour index: 

Kinetic term for the  gluons Kinetic term for quarks Mass term for quarks

The gauge group for the theory is : Unitary 3x3 matrices with determinant  equal to unity. 
An element of the group :   with .  are Hermitian 3x3 
matrices with 

SU(3)
Ω = exp(iωktk) Ω+ = Ω−1 ; det[Ω] = 1 tk

k = 1,2,..,8.

: The Dirac gamma matrices acts on α

: The gauge transformation & covariant derivative acts on a

: 6x6 mass matrices acts on  f

Gauge invariance of the QCD Lagrangian
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(Dμ)ab = δab − i(Gμ)ab

ψ′ (x) = Ω(x)ψ(x) ψ̄′ (x) = ψ̄′ (x)Ω+(x)

D′ μψ′ (x) = ΩDμψ(x) = ΩDμ[Ω+ψ′ ] → D′ μ = ΩDμΩ+

∂μ − iG′ μ = Ω[∂μ − iGμ]Ω+ = Ω∂μΩ+ + ΩΩ+∂μ − iΩGμΩ+

G′ μ = iΩ∂μΩ+ + ΩGμΩ+

Covariant derivative: 

In order to have SU(3) symmetry, we want the fermionic fields to transform as : 

This tells us how the gauge field transforms 

Transformation of the gauge fields then can be written as 

 is the gluonic field, a 3x3 matrix Gμ

Gauge invariance of the QCD Lagrangian
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Finite temperature field theory 
Grand canonical Partition function:  Z = Tre−β[Ĥ−μN̂]

Grand canonical Partition function:

Boundary conditions are anti periodic  for  :  ψ & ψ̄ ψ( ⃗x , x4 + β) = − ψ( ⃗x , x4)

Hamiltonian; Ĥ ≡ Chemical potential μ ≡Operator for the conserved charge; N̂ ≡

We can rewrite the Z making use of the QCD action: The integral over 
time becomes imaginary which becomes the temperature of the system.

Where β =
1
T

Boundary conditions are periodic  for  :  Gμ Gμ( ⃗x , x4 + β) = Gμ( ⃗x , x4)

Combine: Boundary conditions and gauge transformation properties 

Crucial for Order parameter definitions

Z = ∫b.c
DψDψ̄DGμexp [−∫

β

0
dτ∫ d3xLQCD]



6

 symmetry of a purely gluonic systemZ3

1. Gμ( ⃗x , x4 + β) = Gμ( ⃗x , x4)

Ω( ⃗x , x4 + β) = Ω( ⃗x , x4)
Ω( ⃗x , x4 + β) = hΩ( ⃗x , x4)

G′ μ( ⃗x , x4 + β) = Ω( ⃗x , x4 + β)[Gμ( ⃗x , x4 + β) + i∂μ]Ω+( ⃗x , x4 + β)

= hΩ( ⃗x , x4)[Gμ( ⃗x , x4) + i∂μ]Ω+( ⃗x , x4)h+

= hG′ μh+

For the gauge fields we need 

The simplest choice of  Omegas would be :

If we apply this to the gauge transformation property for the field: Can we get an h which 
multiplies the gauge transformation and still gives me a periodic boundary condition for Gμ

2. G′ μ = Ω(Gμ + i∂μ)Ω+

Can we define a transformation like this? :

This is possible when h commutes with Gμ

G′ μ( ⃗x , x4)
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 symmetry of a purely gluonic systemZ3

h = z1h ∈ Z(3) z = exp [ 2πin
3 ]; n = 1,2,3.

We need a matrix h which commutes with all the matrices in the SU(3) group. 

 symmetry: We found out an additional symmetry for a purely gluonic  system 
which is not present at the level of the Lagrangian. When we have quarks, this 
symmetry is explicitly broken.

Z(3)

Centre of the SU(3) group Z(3) ≡

It allows us to define a rigorous phase transition between confinement 
and deconfinement phases in the limit of infinitely heavy quarks

If we define h as follows: 
where

We get a set of transformations which obey the boundary 
conditions and the transformation properties of the field. 
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Polyakov loop as an order parameter 

Φ( ⃗x ) =
1
3

Tr Pexp (i∫
β

0
dx4G4( ⃗x , x4))

⟨Φ( ⃗x )⟩ = 0

⟨Φ( ⃗x )⟩ ≠ 0

Polyakov loop is defined as 

Expectation value of the Polyakov loop can be considered as an order parameter for 
a purely gluonic field.  

which transforms non trivialy under the Z(3) Symmetry 

The vacuum is symmetric under the Z(3) 

The vacuum will not be symmetric under the Z(3) 

P ≡ Path Ordering
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Polyakov loop as an order parameter 

Φ′ ( ⃗x ) =
1
3

Tr Pexp (i∫
β

0
dx4G′ 4( ⃗x , x4))

=
1
3

Tr ΩPexp (i∫
β

0
dx4G4( ⃗x , x4)) Ω+( ⃗x ,0)

=
1
3

Tr ZΩ( ⃗x ,0)Pexp (i∫
β

0
dx4G4( ⃗x , x4)) Ω+( ⃗x ,0)

= ZΦ( ⃗x )

Transformation of the Polyakov loop  

Polyakov loop transforms nontrivially under the Z(3) Symmetry 
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Physical meaning of the Polyakov loop

[∂τ − igG4 + M]ψ( ⃗r, τ) = 0

If we add a very heavy quark into the system, it satisfies the static Dirac equation 
given by:

∂τψ( ⃗r, τ)
ψ( ⃗r, τ)

= − M + gG4( ⃗r, τ)

ln ψ( ⃗r, τ) = − M + ig∫
τ

0
G4( ⃗r, τ′ ) + ln ψ( ⃗r,0)

Separate the variables and integrate

Exponentiate and get the solution

Something which looks similar to Φ

ψ( ⃗x , τ) = exp−MτT exp (ig∫
τ

0
dτG4( ⃗r, τ)) ψ( ⃗x ,0)



e−βF =
1
Nc ∑

i,n

< n |e−βHψi( ⃗r, β)ψ+
i ( ⃗r,0) |n >
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Consider the free energy of the very heavy static quark we put in to the gluonic system

e−βF =
1
Nc ∑

i,n

< n |ψi( ⃗r)e−βHψ+
i ( ⃗r) |n >

=
1
Nc ∑

i,n

e−βEn < n |ψi( ⃗r, β)ψ+
i ( ⃗r,0) |n >

= e−Mβ ∑
n

e−βEn < n |Φ( ⃗r) |n >

e−β(F−F0−M) = < Φ( ⃗r) >

Physical meaning of the Polyakov loop

i → |n > ≡ Possible gluonic states

Imaginary time evolution operator:  eβHψi( ⃗r)e−βH = ψi( ⃗r, β) Use it here!

Solution of the static Dirac equation

= e−Mβ ∑
n

e−βEn < n |
1
Nc ∑

i,j

T exp (ig∫
τ

0
dτG4( ⃗r, τ))

i,j

ψj( ⃗r,0)ψ+
i ( ⃗x ,0) |n >

= e−Mβ ∑
n

e−βEn < n |
1
Nc

Tr T exp (ig∫
τ

0
dτG4( ⃗r, τ)) |n >

δij }
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Free energy  of the static quark in a thermal bath of gluons 
is the expectation value of the Polyakov loop!

Expectation value of the Polyakov loop is an order parameter for 
the confinement phase transition of a purely gluonic system

⟨Φ( ⃗x )⟩ = 0

⟨Φ( ⃗x )⟩ ≠ 0

 Z(3) Symmetry 

 Z(3) Symmetry Broken 

 F = ∞

 F ≠ ∞

 Confinement 

 Deconfinement 

⟨Φ( ⃗x )⟩

TTc = 270 MeV

1 ⟨Φ( ⃗x )⟩

T

1

Purely Gluonic Quark + Gluon

Polyakov loop as an order parameter 
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Symmetries of the massive QCD Lagrangian 

ℒ =
1
4

Ga
μνG

μν
a + iψ̄Dψ − ψ̄mψ

D = γμDμ; Nf = 2

U(1)v : ψ → eiαψ

U(1)a : ψ → e−iαγ5ψ

SU(2)v : ψ → e−i τa
2 θaψ

SU(2)a : ψ → e−i τa
2 θaγ5ψ

ψDψ & ψ̄mψ → invariant

ψ̄Dψ → invariant

ψDψ & ψ̄mψ → invariant

ψ̄Dψ → invariant

α ∈ R

γ5 = iγ0γ1γ2γ3

{γ5, γμ} = 0

Let’s make the system a bit complicated by putting quarks with masses very close to zero

The Lagrangian of the QCD is given by:

where
It has the following properties under the transformations

Invariant group: SU(2)V × U(1)V
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Symmetries of the massless QCD Lagrangian: Theory 

U(1)v : ψ → eiαψ

U(1)a : ψ → e−iαγ5ψ

SU(2)v : ψ → e−i τa
2 θaψ

SU(2)a : ψ → e−i τa
2 θaγ5ψ

ψDψ & ψ̄mψ → invariant

ψ̄Dψ → invariant

ψDψ & ψ̄mψ → invariant

ψ̄Dψ → invariant

α ∈ R
jμ = ψ̄γμψ = Baryon Number

jk
5μ = ψ̄γμγ5τkψ

∂μ j5μ ≠ 0 → Anomalous

jk
μ = ψ̄γμτkψ Qk ≡ Isospin

In the limit where the , the symmetry group is biggermq = 0

jk
5μ = ψ̄γμγ5τkψ

In the limit of massless quarks, the group of transformations under 
which the SU(2) Lagrangian is invariant is :  SU(2)v × SU(2)a × U(1)v

This is called chiral symmetry of the QCD Lagrangian
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U(1)v : ψ → eiαψ

U(1)a : ψ → e−iαγ5ψ

SU(2)v : ψ → e−i τa
2 θaψ

SU(2)a : ψ → e−i τa
2 θaγ5ψ

Baryon Number

jk
5μ = ψ̄γμγ5τkψ

jk
μ = ψ̄γμτkψ

jk
5μ = ψ̄γμγ5τkψ

Exp: Conserved

Exp: Good Symmetry mu ≠ md

Exp: Broken!

∂μ j5μ ≠ 0 Anomalously Broken!

ρ : Jπ = 1−; mρ = 770MeV a1 : Jπ = 1+; ma1
= 1.23GeV

Symmetries of massless the QCD Lagrangian: Experiments 

x

x

Chiral symmetry is observed to have spontaneously broken in 
the real world that we live in. The pions ( ) are identified as 
the corresponding Goldstone bosons of the symmetry breaking.

π0,±
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jk
5μ = ψ̄γμγ5τkψ

Symmetries of massless the QCD Lagrangian: Mexican hat potential

Mexican hat Vacuum is symmetric
under rotation

Vacuum is not symmetric
under rotation

Chiral symmetry is observed to have spontaneously broken in 
the real world that we live in. The pions ( ) are identified as 
the corresponding Goldstone bosons of the symmetry breaking.

π0,±
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Chiral Condensate ≡ ⟨ψ̄ψ⟩ → Order Parameter of Chiral Phase transition

The quantity which break the  symmetry is called the chiral condensateSU(2)a

Chiral symmetry is broken when  ⟨ψ̄ψ⟩ ≠ 0

⟨ψ̄ψ⟩f =
T
V

∂ ln Z
∂mf

Z = ∫ DGμDψ̄ψe−sGeψ̄Mψ

Robert D. Pisarski and Frank Wilczek: Made arguments 
based on Universality classes about the behaviour of 

 in the vicinity of a chiral phase transition< ψ̄ψ >

Chiral condensate as an order parameter

One can calculate chiral condensate from the QCD partition function as follows:

M = iD − mwhere

∂ ln Z
∂mf

=
∂ ln Z
∂M

∂M
∂mf

=
1
z

∂ ln Z
∂M

∂M
∂mf

=
1
z ∫ DGμDψ̄Dψψ̄f ψfe−SGe ∫ dτdx3ψ̄Mψ ∼ ⟨ψ̄ψ⟩f

Then,
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Universality classes
 Different substances have critical points with qualitative similarities, there are quantitative 

similarities between them. 
 There are systems in which the thermodynamic variables are T and P, but T and M. One 

can map one transition to another. So it is possible to study the critical phenomenon using 
them. 

 Most of the concepts can be understood in a given context and then translate into the 
variables for the given system (density, T, P). Essential physics  remains the same.

Universality Class
Critical exponents

Several other ‘objects’

Our system
Eg: Ising model 
in n dimension

Universal objects
Identify

Mapping

Suggestion for the moment: Consider U.C as a group of models which has certain universal features 

Get
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 universality class of the chiral phase transition𝒪(4)
Argument: Chiral phase transition the in chiral limit at  is a 
second order which the same as Universality class  spin model.

μB = 0
𝒪(4)

 How will the chiral condensate behave if it is in the  universality class (U.C)?𝒪(4)
In the vicinity of phase transition, the free energy can be written as:

F =
T
V

ln Z = Fsingular(t, h) + Fregular(T, ml, ms, μ)

Terms: Explicitly breaking symmetry :  h =
1
h0

ml

ms

Terms: Thermal variables which do not break  chiral symmetry:  t =
1
t0 [ T − T0

c

T0
c

+ κg ( μg
T )

2

]
Terms:   How  varies with κg ≡ Tc μB

Specific to the U.C & relevant to the  P.Tχ Specific to the theory & not relevant to the  P.Tχ

Terms: Normalisation Factors t0 & h0 →
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 universality class of the chiral phase transition𝒪(4)
From the argument of universality: Fsingular(t, h) = h0h

1
δfs(z)

Define the order parameter as: 

M(t, h) = − (1 +
1
δ

)h1
δfs(z) +

h
1
δ z

βδ
∂fs
∂z

= h
1
δ [−(1 +

1
δ

)fs(z) +
z

βδ
dfs
dz ]

z =
t

h
1
βδ

∂z
∂h

=
t

h
1
βδ + 1 ( −1

βδ ) =
−z
βδ

1
h

H = h0h

M

T/Tc

ml /ms = 1/10
ml /ms = 1/20
ml /ms = 1/40

1.0

χ − limit

M(t, h) = h
1
δFG(z) {

where

where

We have 

So  would becomeM(t, h)

Compare with LQCD:  is indeed the universality class 
and the phase transition is 2nd order in the chiral limit

𝒪(4)

: Specific to the universality classFG(z)

M(t, h) =
∂Fsing

∂H
= −

1
h0

∂F
∂h

=
∂
∂h

[h1+ 1
δ fs(z)] = − (1 +

1
δ

)h1
δfs(z)

∂fs
∂z

∂z
∂h
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Susceptibilities of the chiral condensate: Real QCD
Looking at some quantity which is is divergent at the vicinity of a phase transition is 
more convenient. We  define the susceptibilities as follows: 

{Diverges in the vicinity of the critical point 
χt ∼

∂M
∂t

∼
∂2fs
∂t∂h

χh ∼
∂M
∂h

∼
∂2fs
∂2h

f′ G =
∂fG
∂z

The behaviour of these susceptibilities are governed by the following two quantities in 
the vicinity of the critical point:

fχ =
1
δ (fG(z) −

z
β

f′ G(z)) {These are specific to the Universality class and hence the 
susceptibilities can be calculated for the QCD system.

What do they tell us about the real QCD 
system with physical quark masses?

It can be used to spot the phase transition and critical point
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In real QGP with physical quark masses we expect for the  simulations:χt,h

Analytic crossover: 

Susceptibilities of the chiral condensate: Real QCD

C
hi

ra
lC

on
de

ns
at

e

As we increase the physical size 
of the lattice, the simulated 
chiral susceptibilities would 
fall on top of each other: 

This is what is observed from LQCD: So the 
QCD phase transition in the real universe with 
physical quark masses is an analytic crossover

Nature 443:675-678,2006: Borsanyi et al., JHEP (2010) Bazavov et al., PRD (2012)
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The Columbia plot at zero chemical potential
The Columbia plot summarises 
what we can expect from QCD 
when we have various values and 
combinations of the quark masses.

O.P is the Polyakov loop
P.T is first order

O.P is the Chiral condensate
P.T is 2nd order ( )U . C = 𝒪(4)

Effective theory for the C.C 
contains a cubic term and it 
gives a 1st order P.T

Crossover phase transition

{
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Finite chemical potential and the sign problem of QCD

SQCD = ∫
β

0 ∫ dτd3xψ̄ [γμDμ + μγ4 + m] ψ ≡ ∫
β

0 ∫ dτd3xψ̄ [M] ψ

The chemical potential enters in to S similar to the 4th component of the gauge field.

γμ+γ5 = γμγ5 = γ5γμ;γ4+ = γ4; −γ4+γ5iG4 = γ5iG4γ4

det[M(μ)]* = det[M(−μ)] ∈ C det[M(μ)]* = det[M(μ)] ∈ R

Fermionic determinant (crucial in LQCD in simulations)M ≡
When  :  μ = 0 (γ5M)+ = γ5M

det[M+] = det[γ5Mγ5] = det[M] ∈ R

When    μ ∈ R When    μ ∈ Im

{
This is the sign problem in QCD with finite chemical potentials

When  :  μ ≠ 0 (γ5M)+ = γ5M
M+(μ) = γ5M(−μ)*γ5

Still, it is problematic!Problematic!
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Finite chemical potential and the sign problem of QCD

Problem with imaginary : There is 
a periodicity in the action that limits 
the range of explorable .

μ

μ

Im( < Φ > )

< Φ > ≠ 0

Most favourable 
state when there is 
quark in the system.

Plane⟨Φ⟩

−Im( < Φ > )

−Re( < Φ > ) Re( < Φ > )

If we can simulate to arbitrarily large : we 
can estimate the quantities on the lattice and 
analytically map it to the real  values.

μ

μ

For a gluonic system:   , 
the Z(3) symmetry is broken. In this 
discrete situation, the three values 
the ground state can take are  
where .

< Φ > ≠ 0

z1
z = {1,e2πi/3, e4πi/3}

Lets see what happens when we have 
quarks with finite imaginary μ
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Finite chemical potential and the sign problem of QCD
Uμ = e−iGμ

Φ =
1
N

TrΠU4(τ, ⃗x )

Z(3) transforms the  on the lattice as:U4 U4 → zkU4

U4 → eiμI/TU4

There is an interplay from the phase coming from Z(3) symmetry and  due to the 
phase structure of transformations! For which of the values of  will it happen ?

μB
μ

The link variable on the lattice for the gauge field is :

The Polyakov loop on the lattice can be written as :

Chemical potentials induce transformations on lattice as follows:
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Finite chemical potential and the sign problem of QCD

Veff(Φ)

μI

< Φ > = einπ/3

n = 0
n = 1
n = 2

μI

T
/
π
3

1 3

T

As the  increases, the real ground state oscillates. From the effective theory for 
the Polyakov loop, we can define an effective potential which reflect this scenario.

μI

In the phase diagram at finite imaginary : We can simulate the quantities up to . 

When we increase  further, the physics repeats itself. Hence we cannot extend the LQCD 
simulations meaningfully towards larger values of imaginary .

μ
μI

T
=

π
3

μI
μ

< Φ > = R < Φ > > 0 & C < Φ > < 0 & C

Tc = 156.5 ± 1.5 MeV

1st Order PT
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Finite chemical potential and the sign problem of QCD

P(T, μB)
T4

=
∞

∑
0

cn(T)( μB

T )
4

cn(T) =
1
n!

∂n(p/T)4

∂(μB/T)n μB
T =0

In order to go to higher   values, we need to calculate higher order derivatives 
which becomes noisy. To calculate one order higher, it takes about two years!.   

As far as I know we have values up to  and some estimates about .

μB

c6 c8

Another way to do the finite  estimations is by the Taylor series expansion.μB

And calculate the coefficients at  to put into the series
μB

T
= 0

One can write the pressure to the temperature ratio as

Within the range of the explored , the higher order corrections are getting smaller. 
It suggest that the series would converge unlike in the vicinity of a critical point. So 
there is no hint about the existence of a critical point from Taylor series approach. 

μB
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• Symmetries of the QCD Lagrangian

•  symmetry of a purely gluonic system and the Polyakov loop 

• Chiral condensate as an order parameter 

• Universality class of the chiral phase transition

• The Columbia plot

• The sign problem in QCD and the realistic walk arounds.

Z3

Outline

{Phase transitions

• Ising model, Landau theory

• Fluctuations and critical exponents

• Cumulants and mapping to the QCD systems

• Connections to the experimental programmes (See Talk - 4 as well)
{Critical phenomenon



Ising model

H = − JΣi,jSiSj − hΣiSi

In naive terms Ising model is  a description of a classical statistical  system with degrees of 
freedom are the discrete ‘spins’ with ensemble of configurations at a given temperature is 
determined by the  . P ∼ e

−H
T

The first term in the Hamiltonian would make it energetically advantageous for the spin to 
align.

 3 dimensional unit vectors labelling each site on the latticei, j :

The second term would influence the alignment of the spins. Depending up on the sign of the 
magnetic field h, the spin can align in an energetically advantageous way.

Let's define magnetisation per spin: .  N is the number of latticeM =
1
N

ΣiSi

Where the Hamiltonian is given by  
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Ising model

< M >

T

The system doesn’t care about the entropy. All spins are aligned which is the ordered state. But 
there are two such phases with identical energy (Up and down).  

For a zero total magnetisation, then the system cannot be in a homogeneous state. 

TCurie

At temperature  and   T = 0 h = 0

Free energy replaces the energy at finite temperature. It takes in to account the entropy.

At temperature T > 0



Landau theory 
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∂F
∂M

= h

F(M) = r(T)M2 +
u(T)

4
M4

r(T)M + u(T)M3 = h

Which will result in the equation of state given by:

An effective analytical description in most of the cases for this model is provided by 
Landau theory though it has problems in making quantitative predictions.

What Landau says is to consider the form of the free energy as follows:

Which is valid in in larger dimensions larger than 4.

The energetically favourable situation for a finite temperature system is  min{F(M) − hM}

Minimising this will give:

Not an analytic function of M. It 
created issues in Landau’s estimations!
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The basic concept of correlation length

The size of the region over 
which the fluctuations are no 
longer uncorrelated grows as 
we approach towards the 
critical point. This is what is 
quantified in the measure of 
the correlation length.

Condensed matter system vs heavy-ion collision systems:  v/s 6.02214076 × 1023 102 − 104

Picture Courtesy: University of Illinois Urbana-Champaign

https://illinois.edu/
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Thermodynamic fluctuations
P(M) ∼ e− V

T (F−hM)
h = 0

T > Tc

T < Tc

Free energy 



Landau theory : An analytic treatment of the fluctuations
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The measure of fluctuation is given by < M2 > = ∫ dMP(M)M2

In the saddle point approximation:

∂2F
∂M2

= (r(T) + 3u(T)M2)
M=0

= r(T)

r(T) → 0 at T = Tc

Consider the magnetisation per patch M(x) =
1
V ∑

i∈vb(x)

Si

p[M(x)] = e
−Ω[M(x)]

T

b = V → M(x) = M → U ≡ F − hM

< M2 > =
T
V ( ∂2F

∂M2 )
−1



Landau theory : An analytic treatment
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b > > ξ :

b > > ξ :

No correlation among the patches

Ω[M(x)] = ∫x
U(M(x))dx

Ω[M(x)] = ∫x
U(M(x)) +

z(M(x))
2

(∇M(x))2 + . .

Let us imagine that some functional for a given patch size b, we change the patch size. 

Then, we need to integrate out  the fluctuations at those scales in-between the two sizes. 
which is a QFT calculation. 

The resulting contribution has to be sorted out in to each of the terms modifying the 
coefficients. 



Landau theory : Gaussian Approximation
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Gaussian Approximation Ω = ∫x

r
2

(δ(M)2 +
z
2

(∇δM2)

When higher order loop terms are included, the exponents are not unity anymore. 

There will the infrared divergences which will induce corrections that needs to 
be resumed. 

This is what the Renormalisation group does.

< δM(x)δM(y) > = ∫ dMP(M)δM(x)δM(y)

ξ =
z
r

< δM(x)δM(y) > =
T
z

1
4π(x − y)1.0

exp(−
(x − y)

ξ
) → < δM2 > =

1
V

T
z

ξ2
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Critical exponents from the Landau theory v/s Ising model

T → Tc

T < Tc

T > Tc

T = Tc

ξ → ∞ M ∼ |T − Tc |−ν ν =
1
2

ν =
2
3

< M > ≠ 0 M ∼ |T − Tc |−β β =
1
2

β =
1
3

M ∼ χhh ≠ 0 χ ∼ |T − Tc |−γ ν =
4
3

γ = 1

M ∼ h
1
δ δ = 3 δ = 5

There is discrepancy between the actual and Landau values !

3D Ising ActualLandau
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Thermodynamic fluctuations
The equilibrium state of a thermodynamic system is the one with maximum entropy. If  we consider 
an order parameter , the probability distribution of the order parameter of a thermal state is give by:σ

P(σ) ∼ eS(σ)

At the critical point the  should deviate from the Gaussian and flattens. The measure of the non-
Gaussianity is a measure of the nearness of a critical point. Also at C.P: 

S(σ)
χ ≡ < δσ2 > V → ∞

χ ∼ V2/3

The central limit theorem seems to have violated near the critical point. However, its not the CLT 
that is violated, but the assumption that  is an average of infinitely many uncorrelated 
contributions is the one which is violated near the critical point. 

δσ
χ ≡ < δσ2 > ∼ ξ2/V

Equilibrium Critical Point 1st Order PT
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From fluctuations to the cumulants

σ ≡ δM z

Ω = ∫x

1
2

(∇σ)2 +
ξ−2

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

We introduce the variable  σ

In terms of which the  becomes Ω

< σ3 > ∼
T2

V2
2λ3ξ6

< σ4 > ∼
T3

V3
6(2λ2

3ξ2 − λ4)ξ8

We can derive that the higher order cumulants are proportional to the correlation lengths as follows:  



41

Signatures of the QCD critical point 
Higher order cumulants are found to be the tool for analysing the phase transitions. The Sign of the 
quartic cumulants depends on which side of the critical point we are in. 

< σ2 >c ∝ ξ2

For , the sign of the 
cumulants  depend strongly 
on the correlation length.

n > 2
κn

< σ4 >c ∝ ξ7

Ising model phase diagram and critical behaviour

How do we map it from Ising 
model to QCD systems ?

The behaviour of the cumulants as we scan the phase diagram is universal. Once we identify the 
universality class which the theory belongs to, it can be predicted without knowing the microscopic 
details of the system. 

Phys. Rev. D 100, 056003 (2019)
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Mapping of Ising model based estimations to QCD 
Map from Ising model phase diagram to QCD: 

Map cumulants from multiplicity distributions: 

(t, h) → (μ − μCP, T − TCP)

κn(N) = < N > + 𝒪(κn(σ))

What we know: The t falls in the 
same line as the phase transition 
The angle between t and H are 
smaller for small quark masses.

For the speculation of a freezeout line, we expect:

See Talk- 4 in this series

Phys. Rev. D 100, 056003 (2019), 
Phys. Rev. Lett. 107, 052301 
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Thanks for your attention!

Picture Courtesy: nobelprize.com, Phys. Rev. Lett. 102, 032301 
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