Cennectin
Th s

Dets 2022

nal CTD Workshop
versity, Princeton, USA

Vecpar - A portability parallelization library

2 Nicholas Styles' Michael Kuhn® Andreas Salzburger* Beomki Yeo®
Thomas Ludwig?

Georgiana Mania"

TDESY 2University of Hamburg 3Otto von Guericke University *CERN ®University of California, Berkeley

Outline Motivation

Motivation

Connecting The Dots Workshop, Princeton University, 2022 1/27

Computing challenges' of the HL-LHC Motivation

fan s
T S
501" ATLAS Preliminary

I 2022 Computing Model - CPU

Run 4 (1=88-140) Run 5 (4=165-200)
T T

« 7-10x increase in data acquisition rate

. 40, . 5
« 10x more events (both real and simulated) s R]
N Sustained budget model & i]
« higher degree of event complexity (mostly “ R :
. . T .o 4
due to an increase in track multiplicity) 20 -

Annual CPU Consumption [MHS06years]

« higher physics accuracy is required 10

T |

« increased efficiency needed in exploiting the N
2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

available hardware resources

Figure 1: Computing model for ATLAS

TATLAS Software and Computing HL-LHC Roadmap [Col22]
Connecting The Dots Workshop, Princeton University, 2022 2/27

Hardware architectures Motivation

World largest supercomputers use accelerators to boost performance and reduce

electricity consumption per computation, with NVIDIA being the most high-ranked GPU
vendor [SDSM]

o Summit (US#1 in 2021) has 27,648 NVIDIA V100s
« JUWELS Booster (EU#1 in 2021) has 2,744 NVIDIA A100

Some of the next exascale supercomputers will employ other vendors like

« AMD for Frontier Supercomputer at ORNL (currently world’s #1), LUMI (EU#1) and
El Capitan Supercomputer at LLNL

« Intel for Aurora Supercomputer at ANL

Code portability is now more important than ever!
Connecting The Dots Workshop, Princeton University, 2022 3/27

Software ecosystem Motivation

Many general solutions to target accelerators with different levels of complexity,

portability and performance through

« language extensions and proprietary frameworks: NVIDIA CUDA, AMD HIP, Intel

oneAPI
(limited portability & code rewrite needed using new language)

« compiler directives (vendor-agnostic): OpenMP, OpenACC

(limited portability when using single source code)

« portability libraries: Kokkos, Alpaka, NVIDIA stdpar
(code rewrite needed to fit the abstractions or limited portability)

Choosing the right solution depends on the application and the accepted compromise.

Connecting The Dots Workshop, Princeton University, 2022 4/27

Requirements Motivation

« Easy to use C++ APl which requires limited code changes to be adopted

« Abstract away the notion of architecture by using (a) single-source code and (b)

automatically generated code for platform optimizations
« Compilable by mainstream C++ compilers (e.g. clang)

« Portable (shared-memory CPU and NVIDIA GPU) but also easily extendable to new
architectures like AMD/Intel GPUs and potentially Big Data platforms (Google
Cloud/AWS)

« Guarantee improved wall-clock performance over the initial (sequential)

implementation with little or no penalty over native parallelization solutions

We designed vecpar having all these in mind.

Connecting The Dots Workshop, Princeton University, 2022 5/27

Outline Vecpar library

Vecpar library

Connecting The Dots Workshop, Princeton University, 2022 6/27

Parallelism on heterogeneous architectures Vecpar library

Regardless of the platform, data parallelism

« means executing the same task for several elements of a collection in parallel (e.g.

OpenMP parallel-for loop)

- requires the data to be partitioned and distributed among the workers (e.g. threads
of any kind: OpenMP, TBB, CUDA, etc)

Moreover, to offload computations to a GPU, some preconditions have to be met

« the function pointer to the actual parallel task has to be copied to the GPU

« the data used for the computations needs to be accessible from the device

Vecpar handles both data distribution and hoste device transfers out of the box.

Connecting The Dots Workshop, Princeton University, 2022 7/27

Abstractions Vecpar library

Vecpar builds on the map-filter-reduce paradigm from functional programming

+ (map f coll) - apply function f to each element of the collection to produce a different
collection of the same size, with the same or different type of elements

o (filter p coll) - keep in the output collection only the elements from the input
collection which satisfy the predicate p

o (reduce f coll init) - reduce the elements of the collection using function f and store
it in the result initialized with init

;3 transform a collection of measurements into space points
(map toSpacePoints °(measl meas2.. measN)) ;; (spl sp2.. spN)

;; keep only the space points (sp) with activation above a threshold
(filter isAboveThreshold? “(spl sp2 sp3)) ;: (spl sp2)

OOUIThWN —

; gather volumes during propagation; ps = propagation state
(reduce addVolume *(ps1 ps2.. psN) []) ;; “(volumel volume2.. volumeM)

Listing 1: Code samples in Clojure programming language [Hic20]

Connecting The Dots Workshop, Princeton University, 2022 8/27

Architecture Vecpar library

vecpar algorithms offer an abstraction layer over low-level specializations enabled by
compile-time polymorphism for the two backends: CPU OpenMP and GPU CUDA

vecpar algorithms

BASIC COMPOSED
(map/mmapf/filter/reduce) (map-reduce / map-filter)
data model storage location parallelization strategy

(vecmem::vector) | | (host / managed memory)| | (CPU OpenMP/GPU CUDA)

Figure 2: Vecpar architecture

Connecting The Dots Workshop, Princeton University, 2022 9/27

Code compilation

Vecpar library

C++ code which extends vecpar algorithms can be compiled (with clang) for different

architectures. cmake examples:

find_package (vecpar REQUIRED)

target_link _libraries (cpu_exe
vecpar :: all
vecmem :: core vecmem ::cuda
OpenMP : : OpenMP_CXX

ooUThWN —

Listing 2: cmake compile for CPU

configuration

Connecting The Dots Workshop, Princeton University, 2022

—_

QOVWONOUIRWN —

find_package (vecpar REQUIRED)

target_link _libraries (gpu_exe
vecpar:: all
vecmem :: core vecmem ::cuda
CUDA:: cudart)

target_compile_options(gpu_exe PUBLIC

$<$<COMPILE_LANGUAGE : CXX>:-x cuda
--offload ~arch=sm_XY>)

Listing 3: cmake compile for GPU
configuration

10/27

Outline Code example

Code example

Connecting The Dots Workshop, Princeton University, 2022 11/27

Runge-Kutta-Nystrom / detray Code example

« Runge-Kutta-Nystrom (RKN) stepper is used to estimate the position and

momentum of charged particles by integrating the equation of motion

o It is a compute intense algorithm, yet ideal for parallelization because it can be

invoked for several tracks in parallel since the data is independent

« A simplified? RKN implementation used for this talk is available in detray project

2with a fixed number of integration steps
3https: //github.com/acts-project/detray
Connecting The Dots Workshop, Princeton University, 2022 12/27

https://github.com/acts-project/detray

Baseline CUDA code

1
< vector3 B) {
2 int gid = threadldx.x + blockldx.x « blockDim.x;
3 vecmem:: device_vector <free_track_parameters> tracks(tracks_data);
4 if (gid >= tracks.size()) { // Prevent overflow
5 return;
6 }
7 auto& traj = tracks.at(gid); // Get a track
8 (// Define RK stepper
9 rk_stepper_type rk(B);
10 // Forward direction
11 rk_stepper_type::state forward_state(traj);
12 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {
13 rk.step(forward_state);
14 }
15 // Backward direction
16 traj. flip ();
17 rk_stepper_type ::state backward_state(traj);
18 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {
19 rk.step (backward_state);
20 L}
21 1}

Code example

__global__ void rk_stepper_test_kernel (vecmem::data::vector_view<free_track_parameters> tracks_data, const

Listing 4: CUDA implementation of the RKN stepper in detray project (Feb 2022)

Connecting The Dots Workshop, Princeton University, 2022

13/27

vecpar implementation Code example

1 struct rk_stepper_algorithm

2 public vecpar::algorithm:: parallelizable_mmap <free_track_parameters, vector3 >{

3

4 TARGET free_track_parameters& map(free_track_parameters& traj, vector3 B) override {
5

6 (// Define RK stepper h

7 rk_stepper_type rk(B);

8 // Forward direction

9 rk_stepper_type::state forward_state(traj);

10 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {

11 rk.step(forward_state);

12 }

13 // Backward direction

14 traj. flip ();

15 rk_stepper_type ::state backward_state(traj);

16 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {

17 rk.step(backward_state);

18 !)

19 return traj;

%? . ! No index-based calculation needed — portable code

Listing 5: C++ implementation of the RKN stepper using vecpar library

Connecting The Dots Workshop, Princeton University, 2022 14/27

Outline Evaluation

Evaluation

Connecting The Dots Workshop, Princeton University, 2022 15/27

Test setup

Evaluation

Test configuration 10,000 simulated tracks using 6 € [0, 7] and ¢ € [—nx,], with origin

position (0,0,0), charge -1, RKN computes 100 integration steps for each track, using a
uniform magnetic field of B=(0,0,2T)

Code setup detray’s backends cmath and eigen are being investigated

’ Config ‘ Environment 1 ‘ Environment 2
Arch 1 socket x 8 cores x 2 threads 2 sockets x 10 cores x 2 threads
CPU Intel(R) Core(TM) i7-10870H @ 2.20GHz | Intel(R) Xeon(R) Gold 5115 @ 2.40GHz
GPU NVIDIA GeForce RTX 3060 NVIDIA Tesla V100
CUDA Driver 510.47.03 510.47.03
CUDA Version 11.6 11.6
C++ compiler clang 14 clang 14

Table 1: Hardware environments used for performance evaluation

4ATLAS-GPUO1 node at the National Analysis Facility (NAF) at DESY
Connecting The Dots Workshop, Princeton University, 2022 16/27

CPU results Evaluation

¢ [Envl]intel i7-10870H cmath backend
¢ [Env2] Intel Xeon Gold 5115
0.20 1 10!
1 =
_015 g 1=
&£
g
Fowo{ °
1072
u
0.05 1 £
Bl
0.0 T , .\
seq_cpu omp_cpu vecpar_cpu i A 5 5 3 75

Implementation Thread number

(a) Comparison between Env1 (16 OpenMP (b) Strong-scaling evaluation: Multi-threading
threads) and Env2 (40 OpenMP threads), double implementations in simple precision for
precision, cmath backend cmath/detray backends, on Env2

Figure 3: Mean and standard deviation for Runge-Kutta-Nystréom stepper

Connecting The Dots Workshop, Princeton University, 2022 17/27

CPU results - Speedup Evaluation

B seq_cpu
s omp_cpu
09 BN vecpar_cpu
Vecpar implementation speedups

. . . 301
over the sequential implementation

for different math backends

Speedup

« 28x - cmath

104

+ 34x - eigen

Vecpar implementation adds no

cmath eigen

overhead in comparison to a ey Cerden

hard-coded OpenMP pragma

imol - Figure 4: Speed-up factors over initial sequential version
impiementation. (seq_cpu) for the multi-threading hard-coded OpenMP
(omp_cpu) and vecpar (vecpar_cpu)implementations using

detray cmath/eigen backends, double precision on Env2

Connecting The Dots Workshop, Princeton University, 2022 18/27

GPU results - Different environments Evaluation

¢ [Env1] NVIDIA GeForce RTX 3060 000 4 [Env1] NVIDIA GeForce RTX 3060
0006k & [Env2] NVIDIA Tesla V100 0.006 4 & [Env2] NVIDIA Tesla V100
0.005 .
0.005
¢ + *
7 0:0041 ©0.0044
g g
E 0.0034 £ 5,003
0.002 0.002 1
0.001 4 0.001 4
0.000 - - 0.000 - -
cuda_nvee vecpar_gpu cuda_nvee vecpar_gpu
Implementation Implementation
(a) Fastmath disabled (b) Fastmath enabled

Figure 5: Mean and standard deviation for Runge-Kutta-Nystrom stepper with grid configuration:
157x64 CUDA threads, clang as host compiler for nvcc

Connecting The Dots Workshop, Princeton University, 2022 19/27

GPU results - Different precision Evaluation

4 Float 0-0074 # Float
00CSh| 4 Double 4 Double
0.006 1
0.005 0.0p48 +/- 10.70%
.005.9045 +/- 3.76% .
0.0042 +/-7.54% 0.005 1 + 0.0044 +/- 7.0§%
 0.004 =
= - 7.33% Z 0.004)
o 04031 +/-7.33% 0.0029 +/- 9.61% P 89033 +/-5.77%
£ 1 E I 0.0029 +/- 4.4]%
£ 0.003 F 0.003 *
0.002 1 0.002 1
0.001 + 0.001 4
0.0 . . 0.00 . .
cuda_nvee vecpar_gpu_mm cuda nvee vecpar_gpu_mm
Implementation Implementation
(a) Fastmath disabled (b) Fastmath enabled

Figure 6: Mean and standard deviation for Runge-Kutta-Nystrém stepper, cmath backend, simple
/double precision, Env2

Similar results were obtained with the eigen backend.

Connecting The Dots Workshop, Princeton University, 2022 20/27

GPU results - Speedup Evaluation

50
B seq_cpu

B cuda_nvcc
BN vecpar_gpu

404
Vecpar implementation speedups

over the sequential implementation 04
for different math backends

Speedup

. 38x - cmath]

« 27x - eigen 101

Vecpar implementation compiled
with clang is faster than the CUDA cmath detray backend

implementation compiled with

eigen

Figure 7: Speed-up factors over initial sequential version
nvee. (seq_cpu) for GPU CUDA (cuda_nvcc) and vecpar
(vecpar_gpu), detray cmath/eigen backends in double

Precision, with fastmath disabled, on Env2

Connecting The Dots Workshop, Princeton University, 202 21/27

Aggregated results Evaluation

= seq_cpu
= vecpar_cpu
& = vecpar_gpu

= seq_cpu
= vecpar_cpu
60 = vecpar_gpu

detray backend

detray backend

(a) Simple precision (b) Double precision

Figure 8: Speedup for vecpar implementation over the base (sequential) CPU implementation,
using cmath/eigen math backends, in simple/double precision, on Env2

Connecting The Dots Workshop, Princeton University, 2022 22/27

Extreme load - 1 million tracks

Evaluation

== seq_cpu
701 mmm omp_cpu
= vecpar_cpu
60| ™ cuda_nvee
= vecpar_gpu

cmath eigen
detray backend

Figure 9: Speedup diagram for simplified RKN
stepper descriebed on slide 16, cmath/eigen backends,
in simple precision, 1 million tracks, fastmath
disabled, on Env1

Connecting The Dots Workshop, Princeton University, 2022

GPU Kernel statistics
(via Nsight Compute Tool)

Theoretical / achieved
occupancy: 66.67% /
65.62%

Execution time: 128ms

Memory throughput:
130GB/s

L1/ L2 cache hit rate:
84.91% / 92.63%

23/27

Aggregated results Evaluation

Evaluation for a simplified RKN integrator

» Speedups of 27-70x over sequential implementation using the same code base
compiled for different platforms
« Vecpar shows comparable wall-clock times to the hand-tuned OpenMP and CUDA

implementations while vecpar is using one single-source file.

Connecting The Dots Workshop, Princeton University, 2022 24/27

Outline Conclusion

Conclusion

Connecting The Dots Workshop, Princeton University, 2022 25/27

Current state and known limitations Conclusion

vecpar library

« is open-source on github >

« supports x86 and NVIDIA GPUs
« uses vecmem library © to handle data structures and memory allocations.

« currently only vecmem::vectors are supported as iterable collections for parallel loops
« managed memory is fully supported by both backends while host memory is supported
for CPU backend only (GPU work in progress)

« is covered by automated tests using googletest infrastructure ’

Disclaimer: vecpar library is in early development phase!

5https: //github.com/wr-hamburg/vecpar
6ht'cps: //github.com/acts-project/vecmem
"https: //github.com/google/googletest
Connecting The Dots Workshop, Princeton University, 2022 26/27

https://github.com/wr-hamburg/vecpar
https://github.com/acts-project/vecmem
https://github.com/google/googletest

Future development Conclusion

Offloading of an algorithm chain on a GPU

+ Use of more complex data types (e.g. 2D vectors)

Automatic performance optimizations

A new (HIP) backend to target AMD GPUs

Suggestions and contributions are highly welcomed! Email me at georgiana.mania@desy.de

Connecting The Dots Workshop, Princeton University, 2022 27/27

mailto:georgiana.mania@desy.de

References

[Col22] ATLAS Collaboration. ATLAS Software and Computing HL-LHC Roadmap.
Technical report, CERN, Geneva, Mar 2022.

[Hic20] Rich Hickey. A history of clojure. Proc. ACM Program. Lang., 4(HOPL), jun 2020.

[SDSM] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. Top500 list.
https://www.top500.org/lists/top500/2021/11/. Accessed: 2022-05-30.

https://www.top500.org/lists/top500/2021/11/

	Motivation
	Vecpar library
	Code example
	Evaluation
	Conclusion
	Appendix
	References

