Cennectin
Th s

Dets 2022

nal CTD Workshop
versity, Princeton, USA

Vecpar - A portability parallelization library

2 Nicholas Styles'  Michael Kuhn®  Andreas Salzburger*  Beomki Yeo®
Thomas Ludwig?

Georgiana Mania"

TDESY 2University of Hamburg 3Otto von Guericke University *CERN ®University of California, Berkeley



Outline Motivation

Motivation

Connecting The Dots Workshop, Princeton University, 2022 1/27



Computing challenges' of the HL-LHC Motivation
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Figure 1: Computing model for ATLAS

TATLAS Software and Computing HL-LHC Roadmap [Col22]
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Hardware architectures Motivation

World largest supercomputers use accelerators to boost performance and reduce

electricity consumption per computation, with NVIDIA being the most high-ranked GPU
vendor [SDSM]

o Summit (US#1 in 2021) has 27,648 NVIDIA V100s
« JUWELS Booster (EU#1 in 2021) has 2,744 NVIDIA A100

Some of the next exascale supercomputers will employ other vendors like

« AMD for Frontier Supercomputer at ORNL (currently world’s #1), LUMI (EU#1) and
El Capitan Supercomputer at LLNL

« Intel for Aurora Supercomputer at ANL

Code portability is now more important than ever!
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Software ecosystem Motivation

Many general solutions to target accelerators with different levels of complexity,

portability and performance through

« language extensions and proprietary frameworks: NVIDIA CUDA, AMD HIP, Intel

oneAPI
(limited portability & code rewrite needed using new language)

« compiler directives (vendor-agnostic): OpenMP, OpenACC

(limited portability when using single source code)

« portability libraries: Kokkos, Alpaka, NVIDIA stdpar
(code rewrite needed to fit the abstractions or limited portability)

Choosing the right solution depends on the application and the accepted compromise.
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Requirements Motivation

« Easy to use C++ APl which requires limited code changes to be adopted

« Abstract away the notion of architecture by using (a) single-source code and (b)

automatically generated code for platform optimizations
« Compilable by mainstream C++ compilers (e.g. clang)

« Portable (shared-memory CPU and NVIDIA GPU) but also easily extendable to new
architectures like AMD/Intel GPUs and potentially Big Data platforms (Google
Cloud/AWS)

« Guarantee improved wall-clock performance over the initial (sequential)

implementation with little or no penalty over native parallelization solutions

We designed vecpar having all these in mind.
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Vecpar library
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Parallelism on heterogeneous architectures Vecpar library

Regardless of the platform, data parallelism

« means executing the same task for several elements of a collection in parallel (e.g.

OpenMP parallel-for loop)

- requires the data to be partitioned and distributed among the workers (e.g. threads
of any kind: OpenMP, TBB, CUDA, etc)

Moreover, to offload computations to a GPU, some preconditions have to be met

« the function pointer to the actual parallel task has to be copied to the GPU

« the data used for the computations needs to be accessible from the device

Vecpar handles both data distribution and hoste device transfers out of the box.
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Abstractions Vecpar library

Vecpar builds on the map-filter-reduce paradigm from functional programming

+ (map f coll) - apply function f to each element of the collection to produce a different
collection of the same size, with the same or different type of elements

o (filter p coll) - keep in the output collection only the elements from the input
collection which satisfy the predicate p

o (reduce f coll init) - reduce the elements of the collection using function f and store
it in the result initialized with init

;3 transform a collection of measurements into space points
(map toSpacePoints °(measl meas2.. measN)) ;; (spl sp2.. spN)

;; keep only the space points (sp) with activation above a threshold
(filter isAboveThreshold? “(spl sp2 sp3)) ;: (spl sp2)

OOUIThWN —

; gather volumes during propagation; ps = propagation state
(reduce addVolume *(ps1 ps2.. psN) []) ;; “(volumel volume2.. volumeM)

Listing 1: Code samples in Clojure programming language [Hic20]
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Architecture Vecpar library

vecpar algorithms offer an abstraction layer over low-level specializations enabled by
compile-time polymorphism for the two backends: CPU OpenMP and GPU CUDA

vecpar algorithms

BASIC COMPOSED
(map/mmapf/filter/reduce) (map-reduce / map-filter)
data model storage location parallelization strategy

(vecmem::vector) | | (host / managed memory)| | (CPU OpenMP/GPU CUDA)

Figure 2: Vecpar architecture
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Code compilation

Vecpar library

C++ code which extends vecpar algorithms can be compiled (with clang) for different

architectures. cmake examples:

find_package (vecpar REQUIRED)

target_link _libraries (cpu_exe
vecpar :: all
vecmem :: core vecmem ::cuda
OpenMP : : OpenMP_CXX

ooUThWN —

Listing 2: cmake compile for CPU

configuration
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QOVWONOUIRWN —

find_package (vecpar REQUIRED)

target_link _libraries (gpu_exe
vecpar:: all
vecmem :: core vecmem ::cuda
CUDA:: cudart)

target_compile_options(gpu_exe PUBLIC

$<$<COMPILE_LANGUAGE : CXX>:-x cuda
--offload ~arch=sm_XY>)

Listing 3: cmake compile for GPU
configuration
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Code example
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Runge-Kutta-Nystrom / detray Code example

« Runge-Kutta-Nystrom (RKN) stepper is used to estimate the position and

momentum of charged particles by integrating the equation of motion

o It is a compute intense algorithm, yet ideal for parallelization because it can be

invoked for several tracks in parallel since the data is independent

« A simplified? RKN implementation used for this talk is available in detray project

2with a fixed number of integration steps
3https: //github.com/acts-project/detray
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Baseline CUDA code

1
< vector3 B) {
2 int gid = threadldx.x + blockldx.x « blockDim.x;
3 vecmem:: device_vector <free_track_parameters> tracks(tracks_data);
4 if (gid >= tracks.size()) { // Prevent overflow
5 return;
6 }
7 auto& traj = tracks.at(gid); // Get a track
8 ( // Define RK stepper
9 rk_stepper_type rk(B);
10 // Forward direction
11 rk_stepper_type::state forward_state(traj);
12 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {
13 rk.step(forward_state);
14 }
15 // Backward direction
16 traj. flip ();
17 rk_stepper_type ::state backward_state(traj);
18 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {
19 rk.step (backward_state);
20 L}
21 1}

Code example

__global__ void rk_stepper_test_kernel (vecmem::data::vector_view<free_track_parameters> tracks_data, const

Listing 4: CUDA implementation of the RKN stepper in detray project (Feb 2022)
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vecpar implementation Code example

1 struct rk_stepper_algorithm

2 public vecpar::algorithm:: parallelizable_mmap <free_track_parameters, vector3 >{

3

4 TARGET free_track_parameters& map(free_track_parameters& traj, vector3 B) override {
5

6 ( // Define RK stepper h

7 rk_stepper_type rk(B);

8 // Forward direction

9 rk_stepper_type::state forward_state(traj);

10 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {

11 rk.step(forward_state);

12 }

13 // Backward direction

14 traj. flip ();

15 rk_stepper_type ::state backward_state(traj);

16 for (unsigned int i_s = 0; i_s < rk_steps; i_s++) {

17 rk.step(backward_state);

18 ! )

19 return traj;

%? . ! No index-based calculation needed — portable code

Listing 5: C++ implementation of the RKN stepper using vecpar library
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Evaluation

Connecting The Dots Workshop, Princeton University, 2022 15/27



Test setup

Evaluation

Test configuration 10,000 simulated tracks using 6 € [0, 7] and ¢ € [—nx, ], with origin

position (0,0,0), charge -1, RKN computes 100 integration steps for each track, using a
uniform magnetic field of B=(0,0,2T)

Code setup detray’s backends cmath and eigen are being investigated

’ Config ‘ Environment 1 ‘ Environment 2
Arch 1 socket x 8 cores x 2 threads 2 sockets x 10 cores x 2 threads
CPU Intel(R) Core(TM) i7-10870H @ 2.20GHz | Intel(R) Xeon(R) Gold 5115 @ 2.40GHz
GPU NVIDIA GeForce RTX 3060 NVIDIA Tesla V100
CUDA Driver 510.47.03 510.47.03
CUDA Version 11.6 11.6
C++ compiler clang 14 clang 14

Table 1: Hardware environments used for performance evaluation

4ATLAS-GPUO1 node at the National Analysis Facility (NAF) at DESY
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CPU results Evaluation

¢ [Envl]intel i7-10870H cmath backend
¢ [Env2] Intel Xeon Gold 5115
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(a) Comparison between Env1 (16 OpenMP (b) Strong-scaling evaluation: Multi-threading
threads) and Env2 (40 OpenMP threads), double implementations in simple precision for
precision, cmath backend cmath/detray backends, on Env2

Figure 3: Mean and standard deviation for Runge-Kutta-Nystréom stepper
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CPU results - Speedup Evaluation

B seq_cpu
s omp_cpu
09 BN vecpar_cpu
Vecpar implementation speedups

. . . 301
over the sequential implementation

for different math backends

Speedup

« 28x - cmath
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+ 34x - eigen

Vecpar implementation adds no
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overhead in comparison to a ey Cerden
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imol - Figure 4: Speed-up factors over initial sequential version
impiementation. (seq_cpu) for the multi-threading hard-coded OpenMP
(omp_cpu) and vecpar (vecpar_cpu)implementations using

detray cmath/eigen backends, double precision on Env2
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GPU results - Different environments Evaluation

¢ [Env1] NVIDIA GeForce RTX 3060 000 4 [Env1] NVIDIA GeForce RTX 3060
0006k & [Env2] NVIDIA Tesla V100 0.006 4 & [Env2] NVIDIA Tesla V100
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Figure 5: Mean and standard deviation for Runge-Kutta-Nystrom stepper with grid configuration:
157x64 CUDA threads, clang as host compiler for nvcc
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GPU results - Different precision Evaluation
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Figure 6: Mean and standard deviation for Runge-Kutta-Nystrém stepper, cmath backend, simple
/double precision, Env2

Similar results were obtained with the eigen backend.
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GPU results - Speedup Evaluation

50
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Figure 7: Speed-up factors over initial sequential version
nvee. (seq_cpu) for GPU CUDA (cuda_nvcc) and vecpar
(vecpar_gpu), detray cmath/eigen backends in double

Precision, with fastmath disabled, on Env2
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Aggregated results Evaluation
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= vecpar_cpu
& = vecpar_gpu

= seq_cpu
= vecpar_cpu
60 = vecpar_gpu

detray backend
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(a) Simple precision (b) Double precision

Figure 8: Speedup for vecpar implementation over the base (sequential) CPU implementation,
using cmath/eigen math backends, in simple/double precision, on Env2
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Extreme load - 1 million tracks

Evaluation

== seq_cpu
701 mmm omp_cpu
= vecpar_cpu
60| ™ cuda_nvee
= vecpar_gpu

cmath eigen
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Figure 9: Speedup diagram for simplified RKN
stepper descriebed on slide 16, cmath/eigen backends,
in simple precision, 1 million tracks, fastmath
disabled, on Env1
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GPU Kernel statistics
(via Nsight Compute Tool)

Theoretical / achieved
occupancy: 66.67% /
65.62%

Execution time: 128ms

Memory throughput:
130GB/s

L1/ L2 cache hit rate:
84.91% / 92.63%
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Aggregated results Evaluation

Evaluation for a simplified RKN integrator

» Speedups of 27-70x over sequential implementation using the same code base
compiled for different platforms
« Vecpar shows comparable wall-clock times to the hand-tuned OpenMP and CUDA

implementations while vecpar is using one single-source file.
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Outline Conclusion

Conclusion
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Current state and known limitations Conclusion

vecpar library

« is open-source on github >

« supports x86 and NVIDIA GPUs
« uses vecmem library © to handle data structures and memory allocations.

« currently only vecmem::vectors are supported as iterable collections for parallel loops
« managed memory is fully supported by both backends while host memory is supported
for CPU backend only (GPU work in progress)

« is covered by automated tests using googletest infrastructure ’

Disclaimer: vecpar library is in early development phase!

5https: //github.com/wr-hamburg/vecpar
6ht'cps: //github.com/acts-project/vecmem
"https: //github.com/google/googletest
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Future development Conclusion

Offloading of an algorithm chain on a GPU

+ Use of more complex data types (e.g. 2D vectors)

Automatic performance optimizations

A new (HIP) backend to target AMD GPUs

Suggestions and contributions are highly welcomed! Email me at georgiana.mania@desy.de
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