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Tracking at HL-LHC

⚫ Track finding is a combinatorics 
problem

⚫ More collisions ⇒ more hits ⇒
more ways to connect hits ⇒
time and computational 
expense grows exponentially

⚫ Pile-up 200 at HL-LHC 
increases number of tracks to 
be reconstructed

⚫ Need approx 100x more time to 
reconstruct using current 
methods and Run-2 detector 
hardware
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New frontiers require new computing paradigms

⚫ Moore’s Law coming to an end 
– Single thread CPU 
performance plateaued

− Computational demands 
increasing everyday!

⚫ Future HPC workflows expected 
to be dominated by GPUs

⚫ Redesign track reconstruction 
algorithms to be bottom up 
and take advantage of 
parallelism provided by GPUs

Source : https://github.com/karlrupp/microprocessor-trend-data
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⚫ Silicon tracker has an inner tracker (silicon pixels) and an outer 
tracker (silicon strips)

⚫ The outer tracker is made of of two closely sandwiched bi-layer " PT 

modules" 

− Allow building of small track stubs based on typical  PT  values of 
tracks 

CMS Tracker Geometry in HL-LHC
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Line Segment Tracking 
A novel approach to parallelizable tracking

⚫ Bottom-up localized approach to track reconstruction in the outer 
tracker of the CMS detector at HL-LHC

− First introduced in CTD2020 
https://indico.cern.ch/event/831165/contributions/3717125/

⚫ Charged particle hits "clustered" to reconstruct entire tracks

⚫ Two hits correlated to form a small track, two small tracks join to 
form a longer track, and so on till tracks are reconstructed

⚫ Can be readily parallelized, since only local information required to 
reconstruct objects

⚫ Algorithm inspired by the one used in the CDF Detector at the 
Tevatron (eXtremely Fast Tracker)

https://indico.cern.ch/event/831165/contributions/3717125/
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The bottom-up construction approach
Mini-doublets and segments

⚫ Mini-doublet created from two 
hits in a bi-layer PT module (2 
hits)

− Only those consistent with 
track PT > 0.8 GeV 
reconstructed

⚫ Two mini-doublets link up to 
form a line segment (4 hits)

− Map of valid "module 
connections" derived from 
simulations to avoid iterating 
over the full detector
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The bottom-up construction approach
Higher Order Objects

Line Segment
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Line Segment
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Segment

Triplet (6 hits)

Common 
Mini-doublet

The bottom-up construction approach
Higher Order Objects
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The bottom-up construction approach
Higher Order Objects

Common 
Mini-doublet

Quintuplet (10 hits)

Triplet

Triplet

Line Segment

Triplet (6 hits)

Line 
Segment Common 

Mini-doublet



Line Segment Tracking at the HL-LHC 11

The bottom-up construction approach
Higher Order Objects
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The bottom-up construction approach
Higher Order Objects
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The bottom-up construction approach
Track Candidates
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Physics Performance
Efficiency distributions

⚫ Measured using 200 events from     + PU200 sample

⚫ Track matching : 75% hits match to a simulated track

⚫ Efficiency saturates at 90%, algorithm competitive with existing CMS 
Tracking algorithms (TDR : https://cds.cern.ch/record/2759072)

⚫ Turn on at 0.8 GeV since only PT > 0.8 GeV tracks reconstructed 

|z| < 30cm, |Δxy| < 2.5cm
|η| < 4.5

|z| < 30cm, |Δxy| < 2.5cm
PT > 0.9 GeV

https://cds.cern.ch/record/2759072
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Physics Performance
Efficiency distributions – displaced tracks

⚫ Efficiency Measured in a sample of displaced muon tracks in a 5cm 
cube around the interaction point

⚫ Good reconstruction efficiency achieved, can be improved further

|z| < 30cm, PT > 0.9 GeV
|η| < 2.5
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Physics Performance
Fake Rate distributions -

⚫ Fake rates in     + PU200 comparable with the Kalman Filter based 
CMS Tracking algorithm

− Can be reduced further with a full fit of hit patterns

⚫ Highest contribution to fakes comes from the Pixel Line Segments, 
especially in the forward region

|z| < 30cm, |Δxy| < 2.5cm
|η| < 4.5

|z| < 30cm, |Δxy| < 2.5cm
PT > 0.9 GeV
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Line Segment Tracking on the GPU
GPU Architecture 101

⚫ GPUs have lots of compute cores (green) compared to CPUs, but 
compromise on caches and data transport

⚫ Compute cores work on existing data while waiting for new data ⇒
significant speed-ups 
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Hits/Pixel
Tracks in GPU

Mini-Doublet
Kernel

… Quintuplet
Kernel

…
Track 
Candidates

Copy 
tracks to 
CPU

⚫ Data stored in structure of Arrays (SoA) for efficient access

− Custom caching allocators for fast and efficient memory access in GPU

Algorithm implemented in CUDA 
(https://github.com/SegmentLinking/TrackLooper) 
and tested on the Tesla V100 GPU

Line Segment Tracking on the GPU
Implementation
Line Segment Tracking on the GPU
Implementation
Line Segment Tracking on the GPU
Implementation

https://github.com/SegmentLinking/TrackLooper
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Line Segment Tracking on the GPU
Implementation : Multi-streaming

⚫ Multi-streaming : One stream per event

⚫ Kernels too large - Entire kernels cannot run in parallel!

⚫ Kernel pipelining - free cores can run parts of kernels from different 
streams 

⚫ Individual kernels take longer but overall throughput improves by 
25%

8 
streams

1 stream
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Line Segment Tracking on the GPU
Lessons learned – More details on Implementation

⚫ Memory allocation has overheads. Custom caching allocator 
exponentially allocates memory and avoids reallocation costs. Improves 
timing by 25%

⚫ Thread divergence issues minimized in new GPUs. Threads that fail any 
step of physics selections exit immediately. Improves timing by 33%

⚫ Register overhead reduced by 50% when kernel and called functions in 
same source file

⚫ Objects passing all selections saved first come first serve. Location of 
new objects computed using atomics to prevent race conditions

⚫ Kernel launches : Block scheduling now smarter. The higher the number 
of blocks the better the scheduling
− Thumb rule : 128 or 256 threads per block

⚫ Memory pre-allocation using multiplicity distributions. Reduces memory 
footprint to 1GB per event, enables multi-streaming

⚫ L1 and L2 caches better and smarter : Shared memory not that important 
anymore
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Line Segment Tracking on the GPU
Timing performance

⚫ Average time per      + PU200 event on a single stream : 34 ms/event

− Note : Timing measured without final transfer of outputs to host

⚫ Our best average time : 26ms/event running on 8 concurrent 
streams

− Takes advantage of using empty cores; 25% faster than single-stream

⚫ Line Segment Tracking on par price wise with the CMS Track pattern 
Recognition algorithm on 64 CPU cores

− CMS Track pattern Recognition takes around 30ms (50% of all tracking, 
scaled to 64 cores)

(DP Note : https://cds.cern.ch/record/2792313/files/DP2021_013.pdf)

− Two socket 64 cores Skylake Gold Xeon processor  has a similar price to 
a V100 GPU

https://cds.cern.ch/record/2792313/files/DP2021_013.pdf
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What the future holds

⚫ Physics algorithm optimizations

− Full fit of tracks to further reduce fake rates

− Better reconstruction of displaced tracks

⚫ Code optimizations

− Mathematical optimizations :efficient computation of physics 
parameters

− Data type optimizations : half precision

− Timing optimizations : Reducing register usage, improving memory 
coalescion

⚫ Final target : deploy in the CMS software backend for HLT and offline 
reconstruction in time for HL-LHC
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Summary

⚫ Track reconstruction challenges are getting more computationally 
expensive in the HL-LHC

⚫ Need to look into parallelizable algorithms to take advantage of new 
computing architectures like GPUs

⚫ Line Segment Tracking : A bottom-up localized algorithm that can 
reconstruct tracks in parallel

⚫ GPU implementation produces good efficiency with low fake rates, 
and is competitive with target CPU reconstruction times (best time : 
26ms/event)



Backup



Track Candidates and Track Candidate Extensions

Pixel Line Segment

Unused 
Pixel Line Segments Quintuplet

Pixel Line Segment

Pixel Quintuplet

Common Mini-
doublet

Quintuplet (10 
hits)

Triplet

Triplet

Triplet

Pixel Triplet

⚫ Pixel Quintuplets and Pixel 
Triplets cover tracks from 
interaction point

⚫ Quintuplets reconstruct 
displaced tracks

⚫ Pixel Line Segments cover 
tracks in the forward (|η| > 2) 
region

⚫ “Cross cleaning” in η-ɸ plane 
reduces duplicates



Physics and Geometrical Considerations
Dealing with Combinatorics

⚫ A typical Pile-up 200 event has 
approx 100K hits. Naive linking 
will lead to explosion in tracks

⚫ Physics selections

− For lower order objects (Mini-
doublets, Line Segments), 
limited information about 
slope consistent with PT

thresholds 

− For higher order objects 
(Quintuplets, Pixel 
Quintuplets, Pixel Triplets) , 
linear fits in r-z and circle 
fits in r-ɸ dimensions,  and 
track quality χ2 cuts



Circle fit

⚫ The circle equation

is linear in the parameters (g,f,c)

⚫ This equation can be rewritten as

⚫ "Target variable" : x2 + y2, "Feature variables"  : (x,y),  linear 
parameters = (2g, 2f, -c)

⚫ Linear fit to these parameters if we have more than three points 
(akin to fitting a plane in 3D space)

⚫ The number of parameters and the nature of the equation (linear) is 
known – hardcode least fit solution 



CMS Baseline Efficiency Plots



Physics performance
Split by components
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Line Segment Tracking on the GPU
Implementation

⚫ Algorithm implemented in CUDA (code) and tested on the Tesla V100 
GPU

⚫ Larger objects created from smaller objects – Every step is 
parallelizable

− Each object creation step is a separate kernel; relies on results from 
previous kernel(s)

⚫ Inputs for the algorithm (pixel track stubs from inner tracker, outer 
tracker hits) already expected to be on the GPU

⚫ Relevant data stored in structure of Arrays (SoA) for efficient SIMT 
access

− Custom caching allocators for fast and efficient memory access in GPU

− 1.2 - 1.5 GB per event pre-allocation

⚫ Transfer to CPU happens at end of the event

⚫ Event level parallelization achieved with "streams" - up to 8 events 
processed simultaneously

https://github.com/SegmentLinking/TrackLooper
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