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Tracking at HL-LHC

o Track finding is a combinatorics
problem

o More collisions = more hits =
more ways to connect hits = time
and computational expense grows
exponentially

e Pile-up 200 at HL-LHC increases
number of tracks to be
reconstructed

o Need approx 100x more time to
reconstruct using current methods
and Run-2 detector hardware
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New frontiers require new computing paradigms

o« Moore’s Law coming to an end —
Single thread CPU performance

50 Years of Microprocessor Trend Data
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provided by GPUs

Source : https://github.com/karlrupp/microprocessor-trend-data
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CMS Tracker Geometry in HL-LHC

« Silicon tracker has an inner tracker (silicon pixels) and an outer tracker
(silicon strips)

o The outer tracker is made of of two closely sandwiched bi-layer " Pt
modules”

— Allow building of small track stubs based on typical Pt values of tracks
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Line Segment Tracking

A novel approach to parallelizable tracking

Bottom-up localized approach to track reconstruction in the outer tracker of
the CMS detector at HL-LHC

—  First introduced in CTD2020

o Charged particle hits "clustered" to reconstruct entire tracks

o Two hits correlated to form a small track, two small tracks join to form a
longer track, and so on till tracks are reconstructed

o Can be readily parallelized, since only local information required to
reconstruct objects

o Algorithm inspired by the one used in the CDF Detector at the Tevatron
(eXtremely Fast Tracker)
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https://indico.cern.ch/event/831165/contributions/3717125/

The bottom-up construction approach

Mini-doublets and segments

« Mini-doublet created from two hits
in a bi-layer Pt module (2 hits)

—  Only those consistent with track
Pt > 0.8 GeV reconstructed

o Two mini-doublets link up to form
a line segment (4 hits)

-~ Map of valid "module
connections" derived from
simulations to avoid iterating over
the full detector
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The bottom-up construction approach

Higher Order Objects

Line Segment
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The bottom-up construction approach

Higher Order Objects
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The bottom-up construction approach

Higher Order Objects
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The bottom-up construction approach

Higher Order Objects
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The bottom-up construction approach

Higher Order Objects
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The bottom-up construction approach

Track Candidates

Track Candidates
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Physics Performance

Efficiency distributions

o Measured using 200 events from +#,tU200 sample
o Track matching : 75% hits match to a simulated track

o Efficiency saturates at 90%, algorithm competitive with existing CMS Tracking
algorithms (TDR : )

e Turnon at 0.8 GeV since only Pt > 0.8 GeV tracks reconstructed
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https://cds.cern.ch/record/2759072

Physics Performance

Efficiency distributions — displaced tracks

o Efficiency Measured in a sample of displaced muon tracks in a 5cm cube
around the interaction point

o Good reconstruction efficiency achieved, can be improved further
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Physics Performance

Fake Rate distributions -

« Fake ratesin ttPU200 comparable with the Kalman Filter based CMS
Tracking algorithm

— Can be reduced further with a full fit of hit patterns

o Highest contribution to fakes comes from the Pixel Line Segments,
especially in the forward region
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Line Segment Tracking on the GPU

GPU Architecture 101

o GPUs have lots of compute cores (green) compared to CPUs, but compromise
on caches and data transport

o Compute cores work on existing data while waiting for new data = significant
speed-ups

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

DRAM

CPU
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Line Segment Tracking on the GPU

Implementation

o Data stored in structure of Arrays (SoA) for efficient access

— Custom caching allocators for fast and efficient memory access in GPU

Hits/Pixel
Tracks in GPU

' Track
Mini-Doublet Quintuplet Candidates
Kernel Kernel

A 4

Algorithm implemented in CUDA
( ) and Copy tracks

tested on the Tesla V100 GPU to CPU
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https://github.com/SegmentLinking/TrackLooper

Line Segment Tracking on the GPU

Implementation : Multi-streaming

o Multi-streaming : One stream per event
o Kernels too large - Entire kernels cannot run in parallel!
o Kernel pipelining - free cores can run parts of kernels from different streams

o Individual kernels take longer but overall throughput improves by 25%
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Line Segment Tracking on the GPU

Lessons learned — More details on Implementation

« Memory allocation has overheads. Custom caching allocator exponentially
allocates memory and avoids reallocation costs. Improves timing by 25%

e Thread divergence issues minimized in new GPUs. Threads that fail any step of
physics selections exit immediately. Improves timing by 33%

o Register overhead reduced by 50% when kernel and called functions in same
source file

o Objects passing all selections saved first come first serve. Location of new objects
computed using atomics to prevent race conditions

« Kernel launches : Block scheduling now smarter. The higher the number of blocks
the better the scheduling
— Thumb rule : 128 or 256 threads per block

« Memory pre-allocation using multiplicity distributions. Reduces memory
footprint to 1GB per event, enables multi-streaming

e L1 and L2 caches better and smarter : Shared memory not that important
anymore
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Line Segment Tracking on the GPU

Timing performance

o Average time per tEPUZOO event on a single stream : 34 ms/event
-~ Note : Timing measured without final transfer of outputs to host

o Our best average time : 26ms/event running on 8 concurrent streams
— Takes advantage of using empty cores; 25% faster than single-stream

o Line Segment Tracking on par price wise with the CMS Track pattern
Recognition algorithm on 64 CPU cores

—  CMS Track pattern Recognition takes around 30ms (50% of all tracking, scaled
to 64 cores)

(DP Note : )

— Two socket 64 cores Skylake Gold Xeon processor has a similar price to a V100
GPU
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https://cds.cern.ch/record/2792313/files/DP2021_013.pdf

What the future holds

o Physics algorithm optimizations
—  Full fit of tracks to further reduce fake rates
— Better reconstruction of displaced tracks
o Code optimizations
- Mathematical optimizations :efficient computation of physics parameters
— Data type optimizations : half precision
— Timing optimizations : Reducing register usage, improving memory coalescion

o Final target : deploy in the CMS software backend for HLT and offline
reconstruction in time for HL-LHC

Line Segment Tracking at the HL-LHC 22




Summary

o Track reconstruction challenges are getting more computationally expensive
in the HL-LHC

o Need to look into parallelizable algorithms to take advantage of new
computing architectures like GPUs

o Line Segment Tracking : A bottom-up localized algorithm that can
reconstruct tracks in parallel

« GPU implementation produces good efficiency with low fake rates, and is
competitive with target CPU reconstruction times (best time : 26ms/event)
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Track Candidates and Track Candidate Extensions

o Pixel Quintuplets and Pixel Triplets
cover tracks from interaction point

Triplet

) ommon Mini-
Tripl oublet

Quintuplet (10
hits)

g S Unused %
Triolet Pixel Line Segments uintuplet

t Pixel Triplet t Pixel Quintuplet

Pixel Line Segment

o Quintuplets reconstruct displaced
tracks

o Pixel Line Segments cover tracks in
the forward (|n| > 2) region

Pixel Line Segment

e “Cross cleaning” in n-¢ plane
reduces duplicates




Physics and Geometrical Considerations

Dealing with Combinatorics

o A typical Pile-up 200 event has

approx 100K hits. Naive linking will Y™ | Hitsperevents _ _
. . 100 /// \\\\
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Circle fit

The circle equation
2 +y? =2 —2fy+c=0

is linear in the parameters (g,f,c)

This equi29z +2flycc=." £ u)) as

« "Target variable" : x>+ y?, "Feature variables" : (x,y), linear parameters =
(zgl Zfl _C)

o Linear fit to these parameters if we have more than three points (akin to
fitting a plane in 3D space)

o The number of parameters and the nature of the equation (linear) is known
— hardcode least fit solution



CMS Baseline Efficiency Plots
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Physics performance

Split by components
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Line Segment Tracking on the GPU

Implementation

Algorithm implemented in CUDA ( ) and tested on the Tesla V100 GPU

Larger objects created from smaller objects — Every step is parallelizable

— Each object creation step is a separate kernel; relies on results from previous
kernel(s)

o Inputs for the algorithm (pixel track stubs from inner tracker, outer tracker
hits) already expected to be on the GPU

o Relevant data stored in structure of Arrays (SoA) for efficient SIMT access
— Custom caching allocators for fast and efficient memory access in GPU
- 1.2-1.5GB per event pre-allocation

o Transfer to CPU happens at end of the event

o Event level parallelization achieved with "streams" - up to 8 events processed
simultaneously
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https://github.com/SegmentLinking/TrackLooper
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