ACTS GPU Track Reconstruction
Demonstrator for HEP

Paul GessingéiHadrien GraslantiHeather Gray,*
Sylvain Joub€éKonrad KusiakAttila KrasznahorkayCharles LeggettGeorgiana Mania,
Joana NiermanhAndreas SalzburgkNicholas StylesStephen SwatmahBeomki Yeb*

1CERN
2lJCLab
3University of California, Berkeley
4Lawrence Berkeley National Laboratory
SDeutsches Elektronen Synchrotron

>

AY
rreeeee '"I

BERKELEY LAB

05/31/2022 Connecting the Dots 2022, Princeton University

A Common Tracking Software (ACTS)

0 A modern opersource HEP tracking toolkit
A Based on C++17

A Experimentndependent Desigh——

o0 An R&D platform to explore new techniques
A GPU Parallelization
A Machine learning

ATLASTk SPHENIX

o0 Related Talks in CTD 2022

Implementation of ACTS into LDMX track reconstruction &

& 31 May 2022, 15:30

® 25m Vecpar - a portable parallelization library & Bellell

@ PCTS Conference room, 4th fl{ p= - -
&= 1.Jun 2022, 09:00 Exploration of different parameter optimization algorithms within &
® 25m

Speaker the context of ACTS software framework
@ PCTS conference room (4th floor) (Jadwin Hall, Priry
B 2 Jun 2022, 10:40
Speaker ® 15m

""" @ PCTS conference room (4th floor) (Jadwin Hall, Princeton University)

A Pierfrancesco Butti (sLAc National Acce EEE | YSE Plenary

A Georgiana Mania (Deutscnes Elektron

L Rocky Bala Garg (stanford University .

05/31/2022 Connecting the Dots 2022, Princeton University 2

Brief History on ACTS GPU Studies

acts / Plugins / Cuda / include / Acts / Plugins / Cuda / @ e tonserrar ooy aoge arxiv:2105.01796v2

ORIGINAL ARTICLE)
noemina refactor!: Using non const InternalSpace... ... « on 18 Mar *) Histor . "
. s 3 O - A GPU-Based Kalman Filter for Track Fitting
‘ Xiaocong Ai'(- Georgiana Mania™(- Heather M. Gray™*® . Michael Kuhn®® - Nicholas Styles’
—18
% Intel® Core™ i9-9900K CPU (original C++) —— Heicﬁlgvid: ;5 Aprzilozjﬂl'l JAa
i L] uthor(s) 1 1
I Seeding E 16 Intsl® Gend HD Graphics NEO -) . [Cor!-HasweII] float operands
. é 14 - NVIDIA GeForce RTX 2060 - Abstract 10° - @ [Cor!—HasweII] double operands
- Seedmg2 12 . —— Computing centres, ini —I- [Cori-V100] float operands ¢
significant fractions of . .
IS * cfmmnnu][crna[i\-‘c.(] I [Cori-V100] double operands '*
BB Utilities 10 T e ably parallelized. Char,
—_—— —— s
3 Cudahpp 8 — - w
6 - ++ t .E.
e 0 102 4
4 e . E
- —_._-.- =
2 —— _e b= which may open up po
i '—:.:—o—_'_ A=)
8 Bgﬁﬁ'?"_.__.r_ - e i 1 1 Keywords Particle trac
& © 10!
g
'5' 2 T o S . " ,
@ o . ' x1 T T T T T
%" 20 40 60 8 100 120 140 160 180 200 o0 02 103 ot 105

Seeds The number of tracks

o In ACTS, there have been pilot studies on GPU seeding and Kalman filtering

o0 However, there is a clear limit when it comes to offloading the full tracking chain
A Not all C++17 features are supported in GPU
A Runtime polymorphism in tracking geometry is problematic

0 As a result, we decided to launch GPU R&D projects to continue early studies and combine
them into single piece

05/31/2022 Connecting the Dots 2022, Princeton University 3

https://arxiv.org/abs/2105.01796

o0 Same physics performance as the existing CPU algorithms
0 Experimentindependent design

0 Realistic detector setup
A Tracking geometry and magnetic field

o Event Data Model (EDM) shared by CPU and GPU
0 Support for single and double precision
o Primarily focusing on CPU, CUDA and SYCL implementations
A CUDA has been a standard GPU API working with NVIDIA hardware

A SYCL is a cregktform heterogeneous computing API working with NVIDIA,
AMD and Intel hardware

05/31/2022 Connecting the Dots 2022, Princeton University 4

Ecosystem of ACTS GPU R&D

C ACTS GPU R&D Projects

fraccc
0 ftraccc ()

GPU track reconstruction demonstrator

o detray
Tracking geometry description without rtime

polymorphism

0 covfie
Compiletime vector field processor (for B field

o algebraplugins G|gebra—p|ugin9
vector and matrix algebra for multiple plugins

0 vecmem _
GPU memory management tool (vecmem) (covfie)

05/31/2022 Connecting the Dots 2022, Princeton University 5

https://github.com/acts-project/traccc/
https://github.com/acts-project/detray
https://github.com/acts-project/covfie
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

GPU Memory Management (vecmem)

~,

o Make use oftd:;pmr::memory_resource [eor code] [Eownm | Jeor code
(upstream memory resourcé&) customize . /
the memory allocation scheme of std::vec B ~
A CPU, CUDA, SYCL, and HIP {std..vector} std: .vector/
o Caching (downstream memory resource) vownstream
supported to reuse the memory allocated . \
the previous events [Upstream _ | _ Upstream
AN AN
0 Used in traccc and detray ‘ malloc W { free malloc free malloc (free ‘
A EDM container AN N N S
A Container for detector components [Device 1 [Device J (Device J

S.Swatman ACAT (2021)

05/31/2022 Connecting the Dots 2022, Princeton University 6

https://indico.cern.ch/event/855454/contributions/4605054/attachments/2354634/4018126/vecmem_ACAT_2021_slides.pdf

Vector and Matrix Algebras (algebra-plugins)

Backend CPU CUDA @ SYCL

cmath
Natively supported

o Algebraplugins provides vector and matrix algebras ~=9" O () Natively supported, but not tested
required for track reconstruction SMatrix O O () No support

0 Users can configure the following at conypilee:

. o /I Define matrix operator with cmath backend and single precision
A S|ng|e or double precision using matrix_operator = cmath::matrix:;:actor< float >;
A Which backends to use: /I Column - wise cross product between matrix (m) and vector (v)

. __host____device___

u Cmath (home'breW) inline matrix_type< 3, 3>cross(const matrix_type< 3, 3>& m,

.. : const vector3&v) const {
u iggn matrix_type <3, 3> ret;
U SMatrixfrom ROOT

auto m_col0 = matrix_operator (). template block< 3, 1>(m, 0, 0);
auto m_coll = matrix_operator (). template block< 3, 1>(m, 0, 1);
auto m_col2 = matrix_operator (). template block< 3, 1>(m, 0, 2);

matrix_operator (). set_block (ret, vector::cross(m_colO, v), 0, 0);
matrix_operator (). set_block (ret, vector::icross(m_coll, v), 0, 1)
matrix_operator (). set_block (ret, vector::cross(m_col2, v), 0, 2);
return ret;

An example usage of matrix algebra
05/31/2022 Connecting the Dots 2022, Princeton University 7

https://github.com/acts-project/algebra-plugins/tree/main/math/cmath
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://root.cern/doc/v606/SMatrixPage.html

Track Reconstruction Chain In traccc

Connected Component
Labeling algorithm

Extend triplets to full tracks

. Hit : Combinatorial o
et Clusterization / Kalman fitting AElE /

Digitized hit data from
ACTS simulation

05/31/2022

Search for triplets

= Refine the CKF results

Detray Geometry

Connecting the Dots 2022, Princeton University

Hit Clusterization

o Connected Component Labeling (CCL) Connected Component Labeling (CCL)
A SparseCGilgorithm

o0 Measurement creation
A Calculate the weighted average of cluster cell 1 [|
positions and covariances b1 —],

0 Spacepoint formation
A local to global transformation
A input to seeding algorithm 00 =

Measurement creation Spacepoint formation

1
[= " Zw(i,j)l(i,j)
(i,j) (i)

(i.))

Calibration input:)
weight calibration, Lorentz shift | |
resulting covariances (parametrised) oca gIObaI

05/31/2022 Connecting the Dots 2022, Princeton University 9

https://ieeexplore.ieee.org/document/9049184

GPU Implementation and Performance

o The GPU algorithm is divided into the following steps:
A The CCL indices (to which cluster cells belong) are recorded in the vector

A The number of clusters is counted from the CCL indices to initialize the vector of clusters with
the proper size

A Counting is required because the GPU does not allow the dynamic allocation in the kernels
A The vector of clusters is filled with cells by looking up the CCL indices again
A The measurement creation (Averaged local position and variance) and spacepoint formation
(local to global transformation) are straightforward thanks to-tmrene correspondence

Clusterization (Single Precision) Clusterization (Double Precision)

CPU: i7-10750H (single core) / GPU: RTX 2070 CPU: i7-10750H (single core) / GPU: RTX 2070
® CPU @ SYCL e CPU @ SYCL

0.100 0.100

0.075 0.075
))
))
£, 0.050 £, 0.050
£ £
= 0.025 = 0.025
—~ —~ o

M .___.——._‘._——-k
0.000 0.000
50 100 150 200 250 300 50 100 150 200 250 300

ttbar pileups ttbar pileups

05/31/2022 Connecting the Dots 2022, Princeton University 10

Seeding Algorithm

0 Spacepoints are grouped based on their azimuthal angle Spacepoint binning
and longitudinal position

< JooaXis

N N W

neighbor
bins

o Doublets are obtained by iterating the spacepoints in the
neighborhood bins

o Triplets are the combination of two doublets which satisfy
the physical criteria (impact parameter, curvature, etc.)

\
~—_ |

A
o Jaxis
o Track parameter estimation i
A global to local transformation let findi ——
A input to track fitting Tripletfinding Track parameter estlmatlo‘n

global local

P
05/31/2022 Connecting the Dots 2022, Princeton University 11

GPU Implementation

0 As for the clusterization algorithm, the size of doublet and triplet containers should be known before
filling them

o The sukalgorithms of triplet finding (except the last filtering process) is divided into counting and finding
A Counting: Counts the number of objects to be filled and initialize the vector containers with the
proper size
A Finding: Populates the objects into the vector containers

o Track parameter estimation (global to local) is as straightforward as the spacepoint formation (local to
global)

spacepoint binning doublet finding triplet finding filtering parameter estimation

S S S——
5 3 | | |

Seeding kernel executions per event

05/31/2022 Connecting the Dots 2022, Princeton University 12

Seeding Performance

o For ttbar <200> pileup events in trackML detector,

one order of magnitude of speedup (CUDA vs. single

CPU core) improvement is achieved with the single
precision

o SYCL is slightly faster than CUDA because the

spacepoint EDM is already located in GPU device from .

clusterization algorithm

Seeding (Single Precision)
CPU: i7-10750H (single core) / GPU: RTX 2070

e CPU @ CUDA @ SYCL
0.4

0.3

0.2

Time [sec]

0.1

0.0 —= == —
50 100 150 200 250 300

ttbar pileups

Tracking efficiency

Efficiency
T

+
++
t

,_I..

0.8

0.6

A==
= lilll
ME=T

uuuuuuuuuu

0.4

ttbar<200> in trackML detector

pl—L 1 Ly v e e e e e

-2 -1 0 1
Truth 7
Seeding (Double Precision)
CPU: i7-10750H (single core) / GPU: RTX 2070
® CPU e CUDA e SYCL

0.4

0.3
o
(]
2 0.2
£
= 0.1

0o /

50 100 150 200 250 300

ttbar pileups

05/31/2022 Connecting the Dots 2022, Princeton University 13

Tracking Geometry without Run-time Polymorphism (detray)

o Runtime polymorphism with pointers, which is widely used for detector building, is not verfrigttly

0 In detray, ruatime polymorphism is removed, and detector configurations are determined at ceimpale

O Compiletime ~ Runtime . @@
U Detectorspecific metedata to configure U Fill the components inside @@
detector components tuples

U initialize tuple containers for components

05/31/2022 Connecting the Dots 2022, Princeton University 14

Detector GPU Offloading

o0 The host/device trait of the detector depends on the |/ cuda kemel function declaration

vecmem cont ai ner ty p e __global_ void test kernel (detector data data);
A host detector with vecmem::vector int - main(){
A device detector with vecmenatevice_vector /I cuda unified shared memory resource
vecmem::cuda:: managed _memory_resource resource;
o) The host detector |S passed to the deV|Ce Code V|a /[host detector with a metadata and vecmem::vector
. . detector<metadata, vecmem::vector> host_detector (resource);
view type object
/I ... Fill detector components in runtime ...
/I detector view type object
[host detector] detector_data data(host_detector);
@ Host side /' run cuda kernel
test_kernel <<<1, 1>>>(data);
[view type object] I

/I cuda kernel function implementation

@ __global__ void test kernel (detector data data){
] /I device detector with a metadata and vecmem::device_vector
device detector)) detector<metadata, vecmem:: device_vector > device_detector (data);
Device side

j j j j j j j /I ... do something with parallelization
}

05/31/2022 Connecting the Dots 2022, Princeton University 15

Propagation Tools

0 Stepper
A Advances the track state through geometry
A Adaptive Rung&uttaNystrommethod (Se® ® a | v bri Thursday)l f |

o Navigator
A Provides the next candidate surface and its distance
A Candidate surface search is based ortnaging

o Propagator
A Steers the workflow between stepper and navigator

05/31/2022 Connecting the Dots 2022, Princeton Univerpity

https://indico.cern.ch/event/1103637/contributions/4821825/

Propagation Speed Benchmark

o CUDA propagation was benchmarked with the pixel
part of trackML detector

A RungeKutta-Nystbm stepper with constant 2 T
A One order of magnitude of speedup withp Tt tracks

Double Precision
CPU: i7-10750H (single core) / GPU: RTX 2070

® CPUcmath @ CPU Eigen CUDA cmath @ CUDA Eigen

3
) 2
(b}
@,
£ 1
E
—e
0 —0—
0 20000 40000 60000

Number of Tracks

05/31/2022 Connecting the Dots 2022, Princeton University 17

