
ACTS GPU Track Reconstruction

Demonstrator for HEP

Paul Gessinger,1 Hadrien Grasland,2 Heather Gray,3, 4

Sylvain Joube,2 Konrad Kusiak,1 Attila Krasznahorkay,1 Charles Leggett,4 Georgiana Mania,5

Joana Niermann,1 Andreas Salzburger,1 Nicholas Styles,5 Stephen Swatman,1 Beomki Yeo3, 4

05/31/2022 Connecting the Dots 2022, Princeton University 1

1CERN
2IJCLab

3University of California, Berkeley
4Lawrence Berkeley National Laboratory

5Deutsches Elektronen Synchrotron

05/31/2022 Connecting the Dots 2022, Princeton University 2

A Common Tracking Software (ACTS)

o A modern open-source HEP tracking toolkit
ÅBased on C++17
ÅExperiment-Independent Design

o An R&D platform to explore new techniques
Å GPU Parallelization
Å Machine learning

ATLAS ITk

o Related Talks in CTD 2022

sPHENIX

BelleII

05/31/2022 Connecting the Dots 2022, Princeton University 3

Brief History on ACTS GPU Studies

o In ACTS, there have been pilot studies on GPU seeding and Kalman filtering

o However, there is a clear limit when it comes to offloading the full tracking chain
Å Not all C++17 features are supported in GPU
Å Runtime polymorphism in tracking geometry is problematic

o As a result, we decided to launch GPU R&D projects to continue early studies and combine
them into single piece

arXiv:2105.01796v2

https://arxiv.org/abs/2105.01796

05/31/2022 Connecting the Dots 2022, Princeton University 4

o Same physics performance as the existing CPU algorithms

o Experiment-independent design

o Realistic detector setup
Å Tracking geometry and magnetic field

o Event Data Model (EDM) shared by CPU and GPU

o Support for single and double precision

o Primarily focusing on CPU, CUDA and SYCL implementations
Å CUDA has been a standard GPU API working with NVIDIA hardware
Å SYCL is a cross-platform heterogeneous computing API working with NVIDIA,

AMD and Intel hardware

Requirements

05/31/2022 Connecting the Dots 2022, Princeton University 5

Ecosystem of ACTS GPU R&D

Ç ACTS GPU R&D Projects

o traccc
GPU track reconstruction demonstrator

o detray
Tracking geometry description without run-time
polymorphism

o covfie
Compile-time vector field processor (for B field)

o algebra-plugins
vector and matrix algebra for multiple plugins

o vecmem
GPU memory management tool

https://github.com/acts-project/traccc/
https://github.com/acts-project/detray
https://github.com/acts-project/covfie
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

05/31/2022 Connecting the Dots 2022, Princeton University 6

GPU Memory Management (vecmem)

o Make use of std::pmr::memory_resource
(upstream memory resource)to customize
the memory allocation scheme of std::vector
Å CPU, CUDA, SYCL, and HIP

o Caching (downstream memory resource) is
supported to reuse the memory allocated in
the previous events

o Used in traccc and detray
Å EDM container
Å Container for detector components

S. Swatman, ACAT (2021)

https://indico.cern.ch/event/855454/contributions/4605054/attachments/2354634/4018126/vecmem_ACAT_2021_slides.pdf

05/31/2022 Connecting the Dots 2022, Princeton University 7

Vector and Matrix Algebras (algebra-plugins)

o Algebra-plugins provides vector and matrix algebras
required for track reconstruction

o Users can configure the following at compile-time:
Å Single or double precision
ÅWhich backends to use:
ü cmath(home-brew)
ü Eigen
ü SMatrixfrom ROOT

// Define matrix operator with cmath backend and single precision
using matrix_operator = cmath::matrix::actor< float >;

// Column - wise cross product between matrix (m) and vector (v)
__host__ __device__
inline matrix_type< 3, 3> cross(const matrix_type< 3, 3>& m,

const vector3& v) const {
matrix_type <3, 3> ret;

auto m_col0 = matrix_operator (). template block< 3, 1>(m, 0, 0);
auto m_col1 = matrix_operator (). template block< 3, 1>(m, 0, 1);
auto m_col2 = matrix_operator (). template block< 3, 1>(m, 0, 2);

matrix_operator (). set_block (ret, vector::cross(m_col0, v), 0, 0);
matrix_operator (). set_block (ret, vector::cross(m_col1, v), 0, 1);
matrix_operator (). set_block (ret, vector::cross(m_col2, v), 0, 2);

return ret;
}

Natively supported

Natively supported, but not tested

No support

An example usage of matrix algebra

https://github.com/acts-project/algebra-plugins/tree/main/math/cmath
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://root.cern/doc/v606/SMatrixPage.html

05/31/2022 Connecting the Dots 2022, Princeton University 8

Data input
Hit

Clusterization
Seeding

Combinatorial
Kalman fitting

Kalman fitting

Search for triplets

Connected Component
Labeling algorithm Extend triplets to full tracks

Refine the CKF resultsDigitized hit data from
ACTS simulation

Track Reconstruction Chain in traccc

Detray Geometry

05/31/2022 Connecting the Dots 2022, Princeton University 9

Hit Clusterization

Spacepoint formation

ὼ ώ

ᾀ

global

ὼᴂ

ώᴂ

ᾀᴂ

local

Connected Component Labeling (CCL)

Measurement creation

o Connected Component Labeling (CCL)
Å SparseCCLalgorithm

o Measurement creation
Å Calculate the weighted average of cluster cell

positions and covariances

o Spacepoint formation
Å local to global transformation
Å input to seeding algorithm

https://ieeexplore.ieee.org/document/9049184

05/31/2022 Connecting the Dots 2022, Princeton University 10

GPU Implementation and Performance

o The GPU algorithm is divided into the following steps:
Å The CCL indices (to which cluster cells belong) are recorded in the vector
Å The number of clusters is counted from the CCL indices to initialize the vector of clusters with

the proper size
Å Counting is required because the GPU does not allow the dynamic allocation in the kernels

Å The vector of clusters is filled with cells by looking up the CCL indices again
Å The measurement creation (Averaged local position and variance) and spacepoint formation

(local to global transformation) are straightforward thanks to one-to-one correspondence

Triplet finding

05/31/2022 Connecting the Dots 2022, Princeton University 11

Seeding Algorithm

o Spacepoints are grouped based on their azimuthal angle
and longitudinal position

o Doublets are obtained by iterating the spacepoints in the
neighborhood bins

o Triplets are the combination of two doublets which satisfy
the physical criteria (impact parameter, curvature, etc.)

o Track parameter estimation
Å global to local transformation
Å input to track fitting

ᾀaxis

‰axis

current
bin

neighbor
bins

Spacepoint binning

ὼ ώ

ᾀ

ὼᴂ

ώᴂ

ᾀᴂ

Track parameter estimation

global local

05/31/2022 Connecting the Dots 2022, Princeton University 12

GPU Implementation

o As for the clusterization algorithm, the size of doublet and triplet containers should be known before
filling them

o The sub-algorithms of triplet finding (except the last filtering process) is divided into counting and finding
Å Counting: Counts the number of objects to be filled and initialize the vector containers with the

proper size
Å Finding: Populates the objects into the vector containers

o Track parameter estimation (global to local) is as straightforward as the spacepoint formation (local to
global)

Seeding kernel executions per event

spacepoint binning doublet finding triplet finding filtering parameter estimation

05/31/2022 Connecting the Dots 2022, Princeton University 13

Seeding Performance

o For ttbar <200> pileup events in trackML detector,
one order of magnitude of speedup (CUDA vs. single
CPU core) improvement is achieved with the single
precision

o SYCL is slightly faster than CUDA because the
spacepoint EDM is already located in GPU device from
clusterization algorithm ttbar<200> in trackML detector

05/31/2022 Connecting the Dots 2022, Princeton University 14

o Run-time polymorphism with pointers, which is widely used for detector building, is not very GPU-friendly

o In detray, run-time polymorphism is removed, and detector configurations are determined at compile-time.

Compile-time Run-time

ü Detector-specific metedata to configure
detector components

ü initialize tuple containers for components

ü Fill the components inside
tuples

Tracking Geometry without Run-time Polymorphism (detray)

05/31/2022 Connecting the Dots 2022, Princeton University 15

// cuda kernel function declaration
__global__ void test_kernel (detector_data data);

int main(){

// cuda unified shared memory resource
vecmem::cuda:: managed_memory_resource resource;

// host detector with a metadata and vecmem::vector
detector<metadata, vecmem::vector> host_detector (resource);

// ... Fill detector components in runtime ...

// detector view type object
detector_data data(host_detector);

// run cuda kernel
test_kernel <<<1, 1>>>(data);

}

// cuda kernel function implementation
__global__ void test_kernel (detector_data data){

// device detector with a metadata and vecmem::device_vector
detector<metadata, vecmem:: device_vector > device_detector (data);

// ... do something with parallelization
}

Detector GPU Offloading

o The host/device trait of the detector depends on the
vecmem container type
Å host detector with vecmem::vector
Å device detector with vecmem::device_vector

o The host detector is passed to the device code via
view type object

host detector

view type object

device detector

Host side

Device side

05/31/2022 Connecting the Dots 2022, Princeton University 16

Propagation Tools

Track

ray

o Stepper
Å Advances the track state through geometry
Å Adaptive Runge-Kutta-Nyströmmethod (See DΦ aŀƴƛŀΩǎ ǘŀƭƪon Thursday)

o Navigator
Å Provides the next candidate surface and its distance
Å Candidate surface search is based on ray-tracing

o Propagator
Å Steers the workflow between stepper and navigator

https://indico.cern.ch/event/1103637/contributions/4821825/

05/31/2022 Connecting the Dots 2022, Princeton University 17

Propagation Speed Benchmark

o CUDA propagation was benchmarked with the pixel
part of trackML detector
Å Runge-Kutta-Nyström stepper with constant 2 T
Å One order of magnitude of speedup with /ρπ tracks

