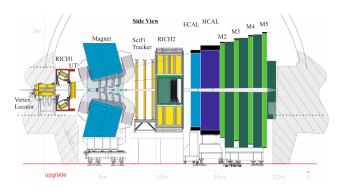
Real-time alignment procedure at the LHCb experiment for Run 3

Connecting The Dots 31 May - 2 June 2022

Florian Reiss on behalf of the LHCb collaboration

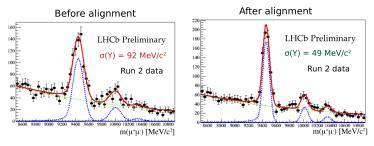
02.06.2022



The University of Manchester

Introduction

[LHCb-TDR-12]

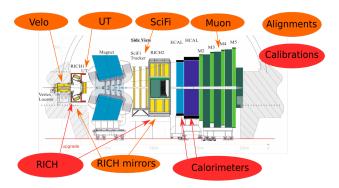

LHCb Upgrade detector

- many hardware changes
- fully software-based trigger at 30 MHz

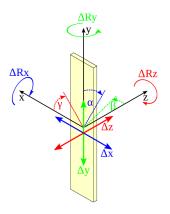
Introduction

To achieve ultimate LHCb physics potential

- best possible momentum resolution
- best possible particle-identification performance
- best possible distinction of primary and secondary vertices
- → precise alignment & calibration is needed



[2015 J. Phys.: Conf. Ser. 664 082010]


automatic real-time alignment pioneered for Run 2 [JINST 14 (2019) P04013]

Introduction

What we need to align and calibrate?

Align VELO, UT, SciFi, Muon system

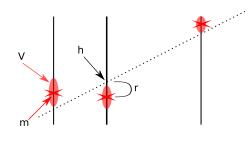
Degrees of freedom α for tracker alignment (alignment constants)

- 3 translations T_x , T_y , T_z
- 3 rotations R_x , R_y , R_z

for each 'alignable' element

To align the tracking detectors

- reconstruct tracks with initial alignment parameters α_i
- tracks fitted using Kalman filter [Nucl.Instrum.Meth.A 600 (2009) 471-477]
- new alignment parameters α_{i+1} obtained by χ^2 minimisation
- can include vertex and mass constraints [Nucl.Instrum.Meth.A 712 (2013) 48-55]


Use states and covariance matrices from Kalman filter for alignment [Nucl.Instrum.Meth.A 600 (2009) 471-477]

$$\chi^{2} = r^{T} V^{-1} r$$

$$r = m - h(x, \alpha)$$

$$\frac{d\chi^{2}}{d\alpha} = 2 \sum_{tracks} \frac{dr}{d\alpha}^{T} V^{-1} r$$

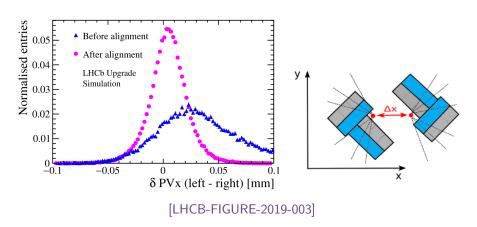
$$\frac{d^{2} \chi^{2}}{d\alpha^{2}} = 2 \sum_{tracks} \frac{dr}{d\alpha}^{T} V^{-1} R V^{-1} \frac{dr}{d\alpha}$$

- r: track residuals
- $\alpha_1 = \alpha_0 \left(\frac{d^2\chi^2}{d\alpha^2}\right)^{-1}$ $\frac{d\chi^2}{d\alpha}$ m: measurement h: track model
 - h: track model
 - R: covariance matrix of residualsV: measurement covariance matrix

Iterative procedure until convergence $\frac{\Delta \chi^2}{ndof} <$ 4 and $\Delta \chi^2 <$ 25 for each alignment degree of freedom

$$\Delta \chi^2 = -\Delta \alpha^T \operatorname{Cov}(\alpha)^{-1} \Delta \alpha$$

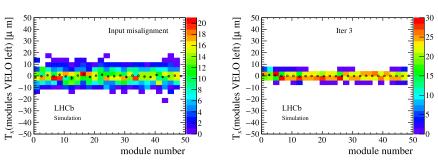
If not converged, start next iteration from reconstruction with updated set of alignment constants


VELO alignment

- silicon pixel detector
- two halves with 26 modules consisting of 4 sensors
- open when beam is injected ($\approx 29 \, \text{mm}$)
- closed when beams are stable ($\approx 5.1 \, \text{mm}$)
- need to compensate for displacement from closing for each LHC fill
- precise alignment needed to identify primary and secondary vertices
 - make use of primary vertex constraints

VELO alignment

VELO alignment quality from measurement of the distance of the PV position reconstructed using only tracks in the right or left half

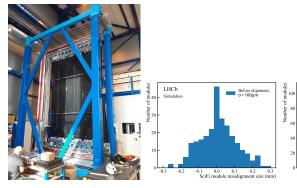


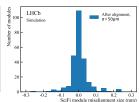
bias would indicate misalignment

VELO alignment

to evaluate expected alignment precision

- start with random non-zero alignment constants (input misalignment)
- run alignment until convergence
- repeat and study distribution of residual misalignment
 - ▶ mean: bias in alignment
 - width: expected precision

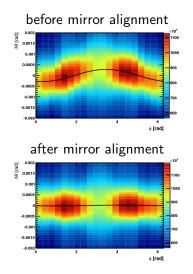

[LHCB-FIGURE-2022-006]

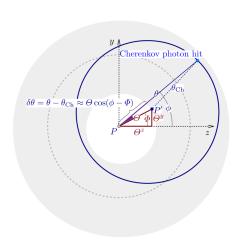

similar procedure for other trackers

10

SciFi alignment

- scintillating fibers
- alignment important for momentum resolution



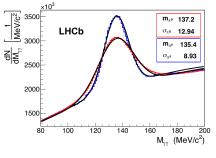


[LHCB-FIGURE-2022-006]

• use mass constraints ($D^0 \to K\pi$, $J/\psi \to \mu^+\mu^-$) to improve alignment quality

RICH mirror alignment

[Eur. Phys. J. C 73 (2013) 2431]

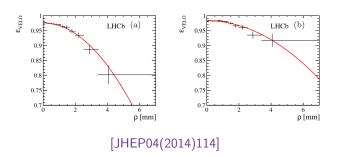

• align RICH mirrors to improve particle-identification performance

02.06.2022

Calorimeter calibration

Calibrate calorimeter to account for ageing effects

- relative calibration
- absolute calibration
- \rightarrow adjust high voltage

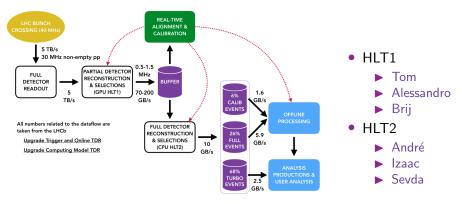

[arXiv:2008.11556]

e.g. fit $\pi^0 \rightarrow \gamma \gamma$ mass peak for absolute ECAL calibration

For Run 2 pioneered offline-like quality in online reconstruction

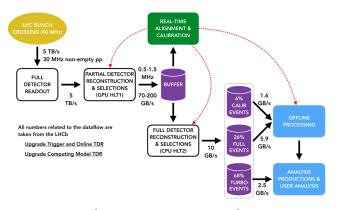
- avoid re-running offline
- reduce differences between offline and online

As illustrative example Run 1 VELO tracking efficiency: (not a problem for Run 3 VELO)


left: online, right: offline

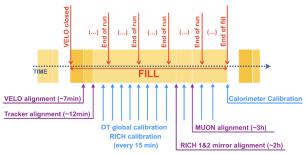
 ρ : distance of closest approach of track to z-axis

Florian Reiss


For Run 3 real-time alignment is even more important

- purer selections with less backgrounds to reduce bandwidth
- majority of events will be only partially recorded (Turbo)

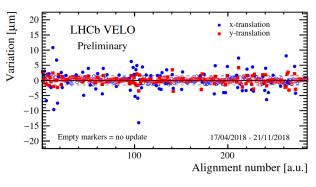
[LHCB-FIGURE-2020-016]


- \rightarrow not possible to reconstruct full event offline
- → need best alignment&calibration online for trigger selection 02 06 2022

[LHCB-FIGURE-2020-016]

- alignment uses samples selected by HLT1 saved in the buffer
- alignment is executed at the start of each fill
- ullet alignment&calibration used in the trigger o "real-time"

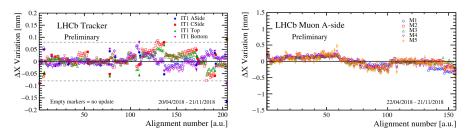
Run 2:


((~7min),(~12min),(~3h),(~2h)) - time needed for both data accumulation and running the task

[JINST 14 (2019) P04013]

- tracker alignment finished in few minutes
 - can be used in HLT1
- RICH alignment has larger time window
 - only used in HLT2
- in case of significant variation, update database for HLT1 and HLT2

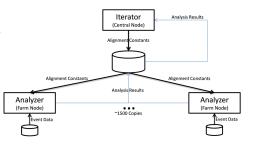
02.06.2022


Run 2:

[LHCB-FIGURE-2019-015]

- frequent updates due to closing procedure
- typical sample of \approx 40000 minimum bias events (proton-proton and proton-gas)

Run 2:

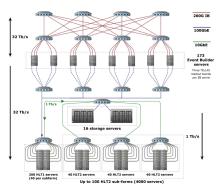


[LHCB-FIGURE-2019-015]

- tracker
 - ▶ typical sample of $\approx 70000 \ D^0 \rightarrow K\pi$ decays
 - update every few weeks
- muon system
 - typical sample of $\approx 200000 \ J/\psi \rightarrow \mu^+\mu^-$ decays
 - ▶ update only expected after technical intervention

Tracker alignment can be split in two parts:

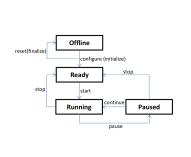
- Analyzer
 - ightharpoonup read current constants α_i
 - reconstruct tracks
 - calculate derivatives
 - write derivatives to file
- Iterator
 - read derivatives files
 - perform minimization
 - \blacktriangleright write out new constants α_{i+1}
 - trigger update if necessary
- ightarrow analyzer can be easily split over multiple processes/threads
 - RICH mirror alignment also can be split up in similar manner

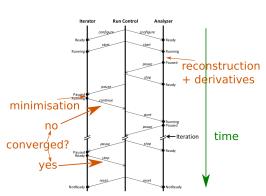

Run 2:

- single-threaded reconstruction
- alignment processes distributed over event-filter farm (≈ 1600 nodes)

Run 3:

02 06 2022

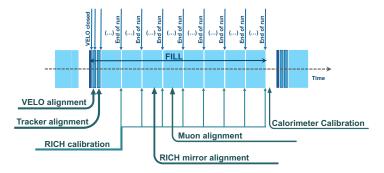

- multi-threaded reconstruction
- fewer nodes prioritizing alignment jobs (163 nodes)



[Comput.Softw.Big Sci. 6 (2022) 1, 1]

alignment jobs expected to take similar or less time w.r.t to Run 2

Implemented as finite-state machine steered by Run Control



Summary

- fully automated real-time alignment pioneered for Run 2
- for Run 3 new detector and fully software-based trigger
 - ▶ real-time alignment essential for best performance
 - exploits multi-threaded execution
 - currently building up system

Tune system over time with the feedback from taking real data

02 06 2022