

Graph Neural Network for Three Dimensional Object Reconstruction in Liquid Argon Time Projection Chambers

Kaushal Gumpula (University of Chicago) Giuseppe Cerati (Fermilab) Daniel Grzenda (University of Chicago) V Hewes (University of Cincinnati) on behalf of Exa.TrkX

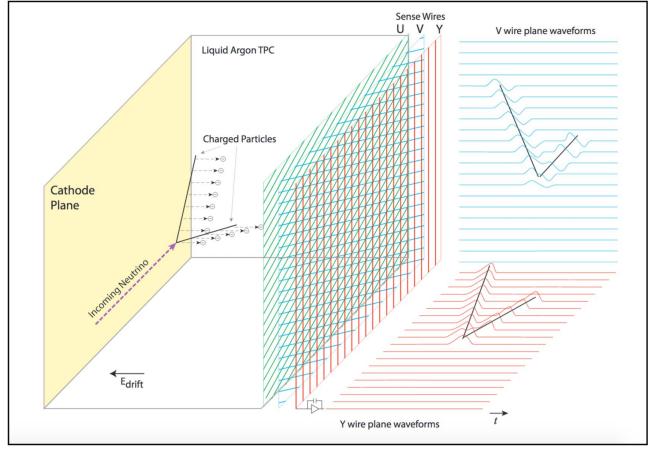
Background

Motivation

- Liquid argon time projection chambers (LArTPCs) are the detector technology for modern high-precision neutrino experiments, such as DUNE and MicroBooNE
- Machine learning approaches have been proven successful for reconstruction in LArTPCs, especially for particle identification
 - These approaches are typically based on convolutional neural networks, which treat detector data as images and typically require downsampling of information to fit into memory requirements
- LArTPC detector data is also naturally sparse
 - By translating data into graphs, we can have full usage of the information without downsampling
- We present a graph neural network (GNN) for particle identification and 3D reconstruction for LArTPCs

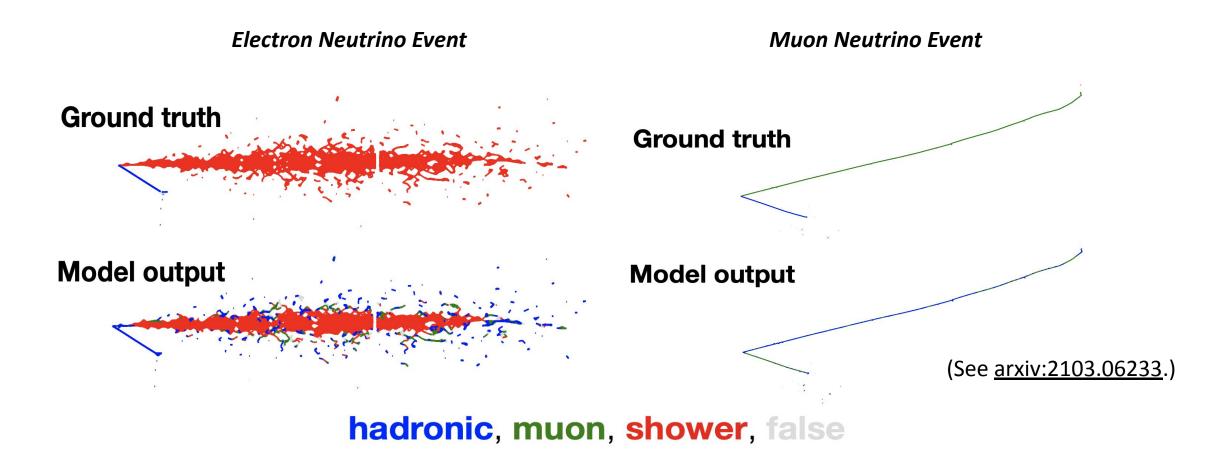
LArTPC Overview

- Each interaction on each plane is transformed into a graph where each hit is a node and edges are formed between nodes in a certain region or "window" based upon wires and time ticks
- We want to find ways to design a Neural Network, specifically a Graph Neural Network (GNN), and its inputs in order to recognize different particle topologies in these interactions



(See <u>arxiv:2103.06233</u>.)

Original GNN Classification



5

Updated Classification

Previous: 4 categories (edges)

- Hadron, muon, shower, false
- Hadronic class was very general (umbrella class), difficult for the model to learn
- False class was nonphysical, also difficult for model to learn

Updated: 8 categories (hits/nodes)

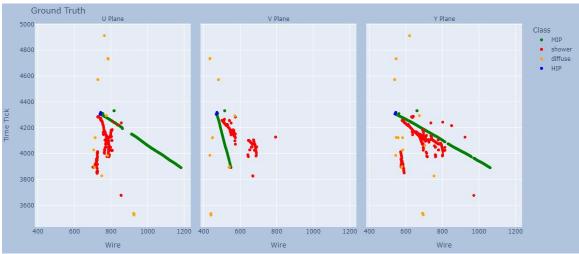
• Pion, muon, kaon, hadron, shower, michel, delta, diffuse

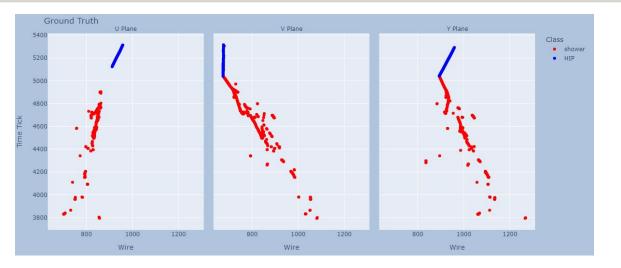
Two New Labeling Schemes were introduced

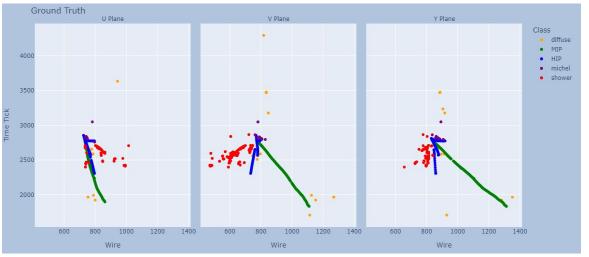
- Simple Scheme
 - MIP(muon, delta, pion), HIP(kaon, hadron), shower, michel, diffuse
- Full Scheme
 - Muon, delta, HIP(kaon, hadron), pion, shower, michel, diffuse

Event Visualizations (Simple)





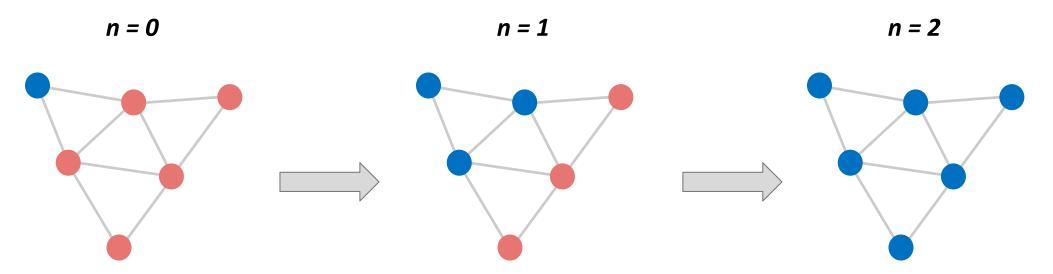




Message Passing and GNN Structure

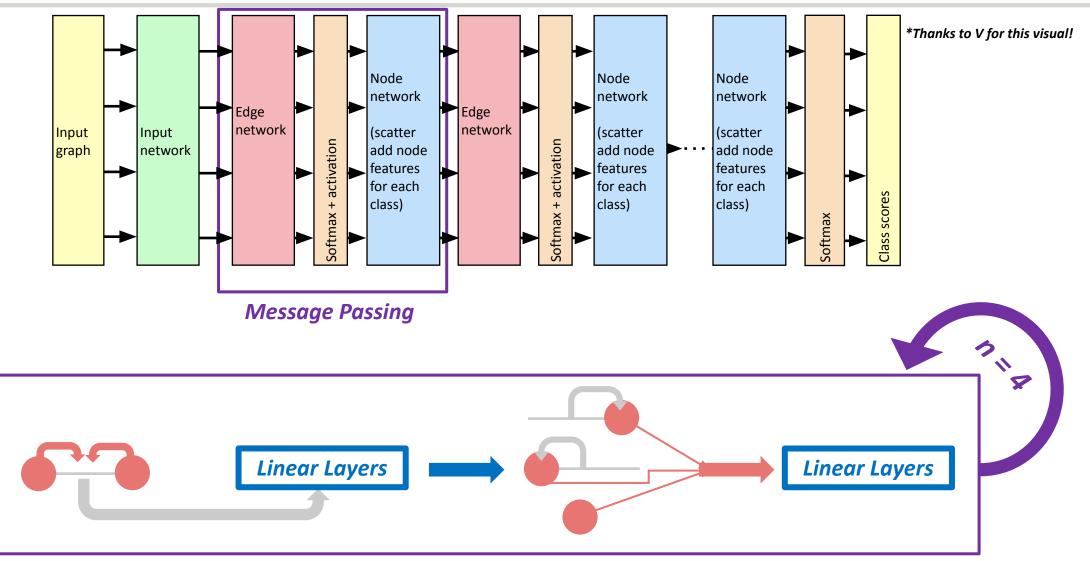
GNN Message Passing

Each Node in the Graph has associated node features such as hit position and amplitude (deposited charge)



We can explore what happens to information (node features) in our initial node after message passing iteration *n*.

Original GNN Design



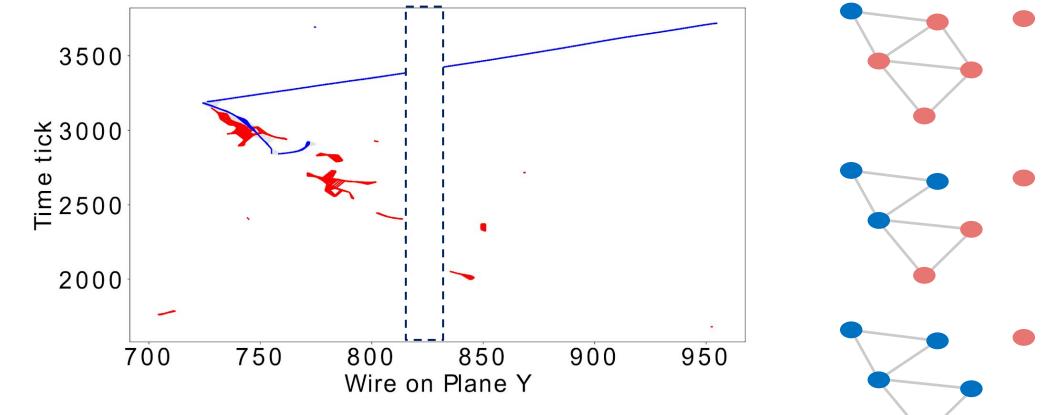
Graph Creation

n = 0

n = 1

n = 2

Working on Realistic Simulation



Connectivity in graphs becomes a notable issue for the message passing mechanism

*The interrupted connectivity shown in this example is due to unresponsive wire regions (Not limited to just this case as is evident with the electron shower)

Edge-Forming Techniques

- In response to this problem, we implemented 4 different edge-forming schemes
 - Window (Original)
 - Connects nodes within a certain (Time Tick x Wire) Window
 - Delaunay
 - Computes Delaunay Triangulation of all nodes in a graph
 - kNN
 - Connects node with its k nearest neighbours
 - Radius
 - Connects node with all neighbours in a certain radius

Dataset Statistics

Full

3.77%

1.15%

- Training Set has 651,135 Graphs with an average of 352.84 Nodes per Graph
- 1 Full Interaction translates to 3 Graphs with 1 per plane (U,V,Y)

24.75%

Dataset	Diffuse	Michel	Shower	MIP	HIP	Muon	Delta	Pion
Simple	3.77%	1.15%	24.65%	54.02%	16.41%			

- -

Class Breakdown across Labeling Schemes

Average Edges across Edge-Forming Schemes

11.70% 52.91%

4.77%

0.95%

Edge-Forming Technique	Window	Delaunay	kNN	Radius
Average Edges Per Graph	966.82	1046.48	1400.52	1291.39

2D Results

2D Model Configuration Summary

- 8 Total Model Configurations
 - 4 Different Edge-Forming Schemes
 - 2 Different Labeling Schemes (Simple and Full)

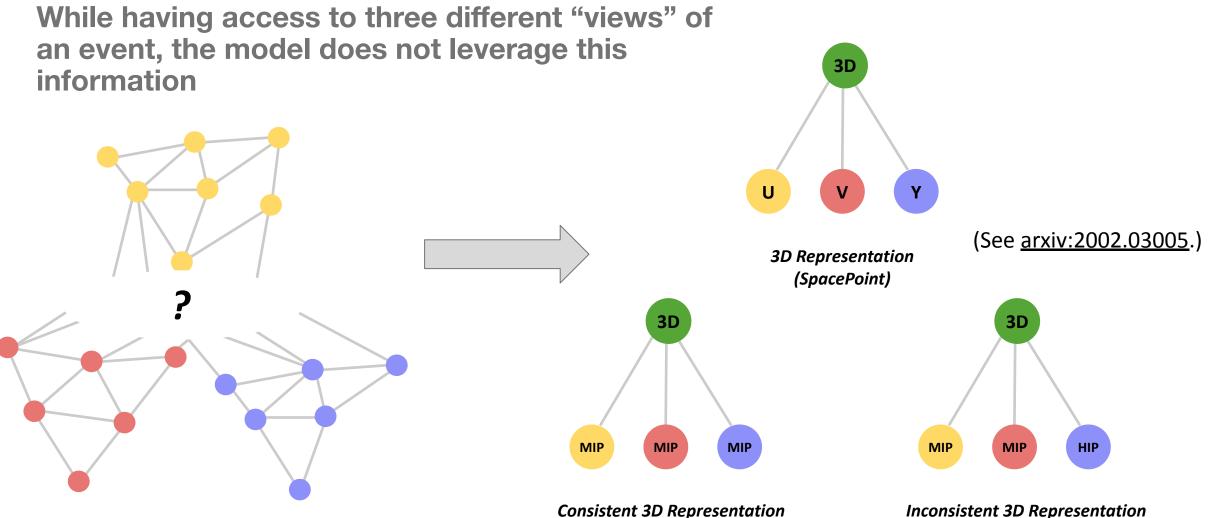
2D Performance Summary

Edge Type	Data Type	Labeling Scheme	Accuracy	Consistency
Delaunay	$2\mathrm{D}$	Simple	86.24%	74.45%
Window	2D	Simple	76.9%	60.27%
kNN	2D	Simple	81.14%	64.62%
Radius	2D	Simple	78.58%	61.26%
Delaunay	$2\mathrm{D}$	Full	81.97%	67.38%
Window	2D	Full	74.64%	56.89%
kNN	2D	Full	78.52%	60.54%
Radius	2D	Full	76.02%	57.60%

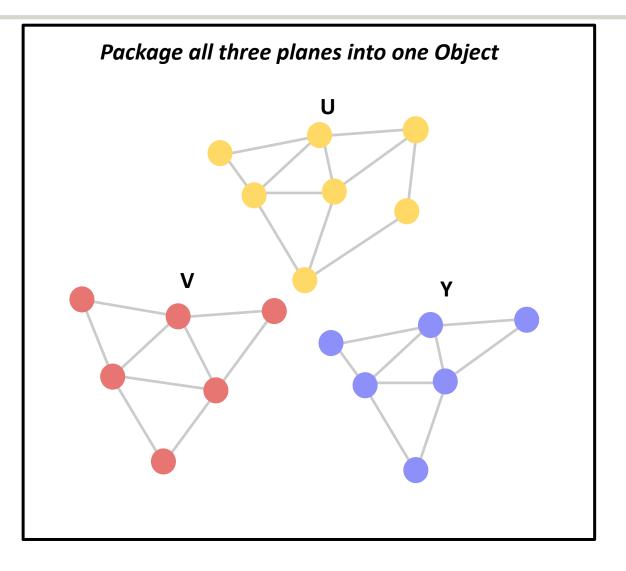
- Delaunay Edge-Forming Scheme performed the best for both Simple and Full Labeling Schemes
- Introduction of Consistency Metric

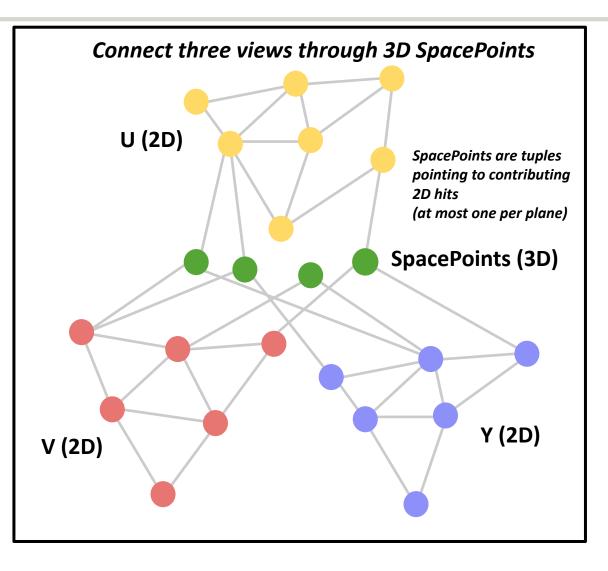
3D SpacePoints

How do we leverage all three views?

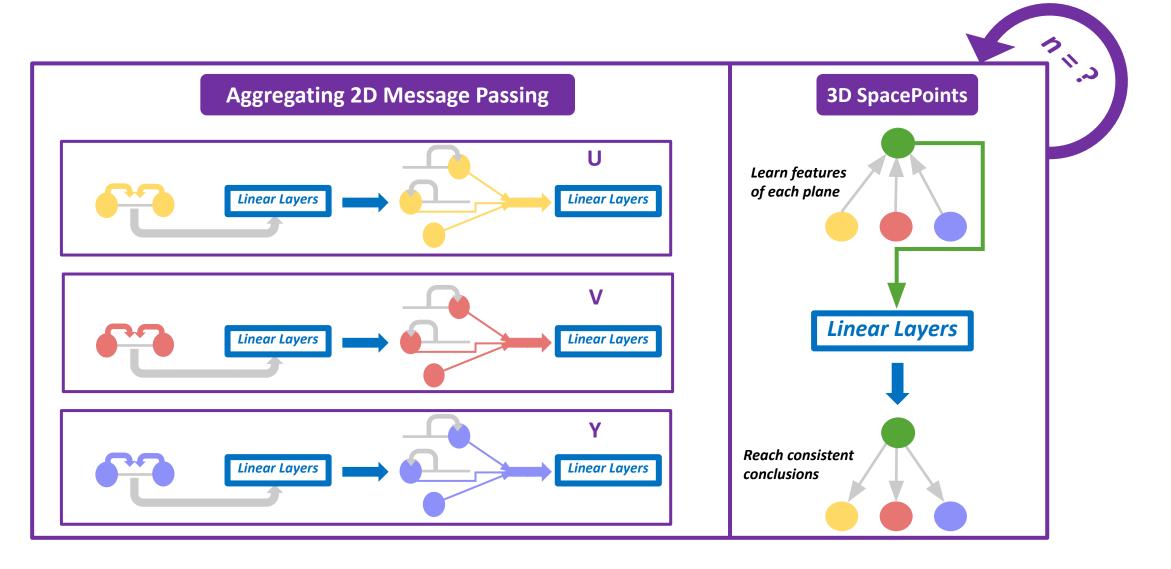


Implementation of 3D SpacePoints

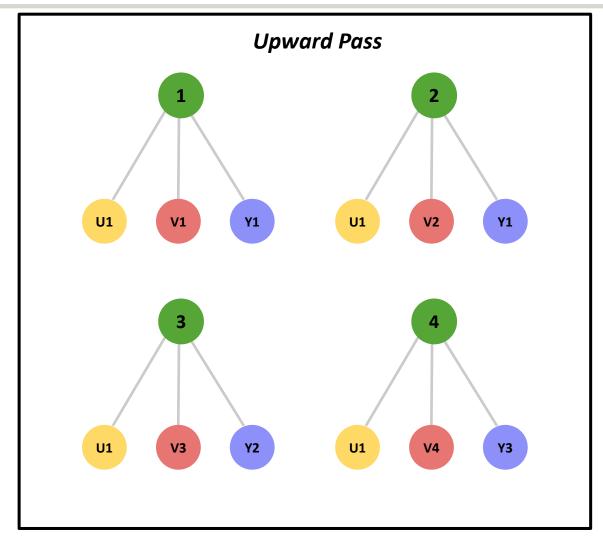


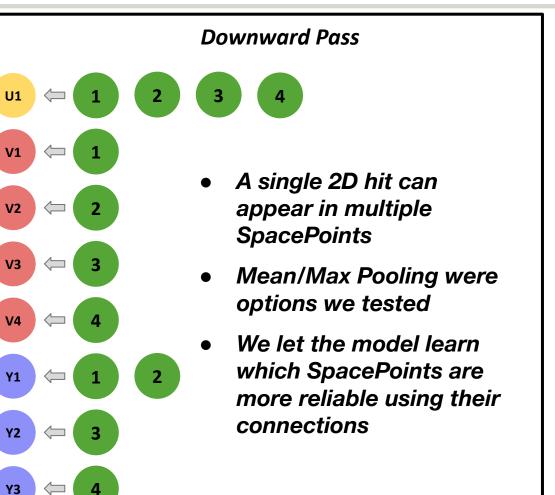


Message Passing with 3D SpacePoints



SpacePoint Pooling and Attention





2D/3D Result Summary

Full Model Configuration Summary

- 16 Total Model Configurations
 - 4 Different Edge-Forming Schemes
 - 2 Different Labeling Schemes (Simple and Full)
 - 2D vs 3D

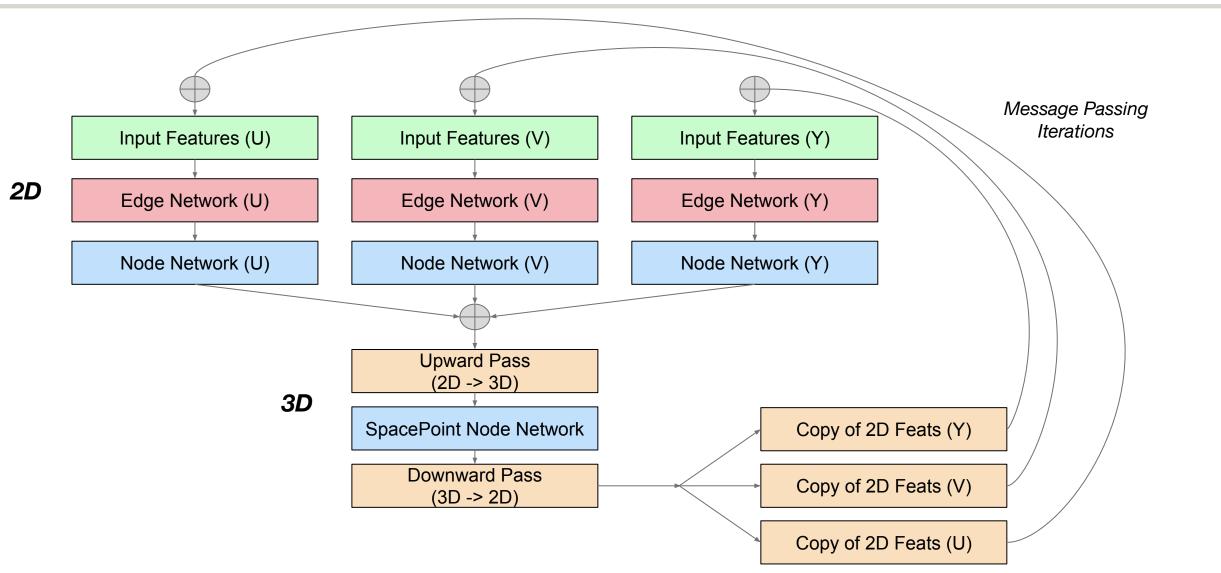
Full Performance Summary

Edge Type	Data Type	Labeling Scheme	Accuracy	Consistency
Delaunay	$2\mathrm{D}$	Simple	86.24%	74.45%
Window	2D	Simple	76.9%	60.27%
kNN	2D	Simple	81.14%	64.62%
Radius	2D	Simple	78.58%	61.26%
Delaunay	3D	Simple	82.41%	96.34%
Window	3D	Simple	78.18%	97.35%
kNN	3D	Simple	80.89%	96.61%
Radius	3D	Simple	79.57%	96.48%
Delaunay	$2\mathrm{D}$	Full	81.97%	67.38%
Window	2D	Full	74.64%	56.89%
kNN	2D	Full	78.52%	60.54%
Radius	2D	Full	76.02%	57.60%
Delaunay	3D	Full	79.02%	94.38%
Window	3D	Full	75.13%	93.60%
kNN	3D	Full	76.77%	93.67%
Radius	3D	Full	75.92%	94.14%

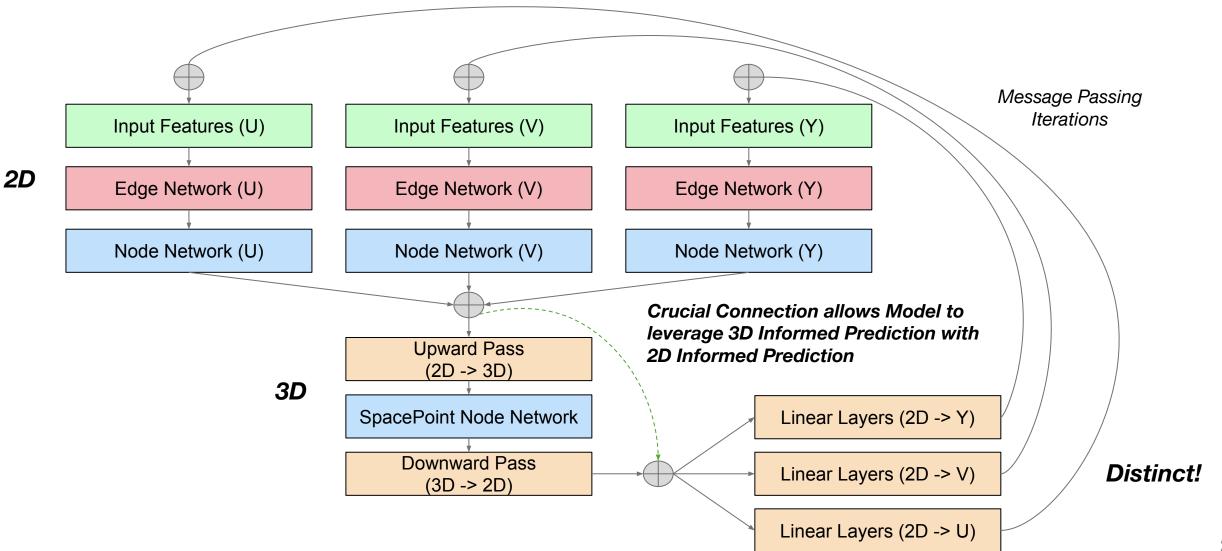
- 3D Results are very consistent, but lack in accuracy when compared to their 2D counterparts
- However, the 2D models have comparatively higher accuracy, but terrible consistency
- Consistency in truth across 3D SpacePoints is around 95-97% which suggests that there is learnable information
- How do we bridge this accuracy-consistency gap?

The SpacePoint Problem

Current Network (Simplified)



Enforcing vs Encouraging Consistency

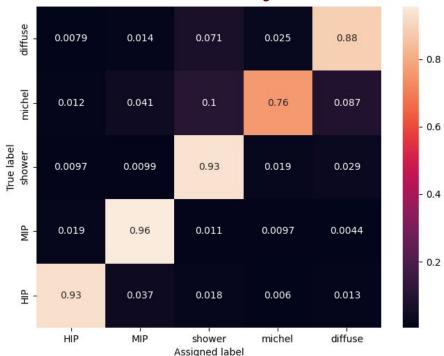


Preliminary Performance Breakdown

0.6

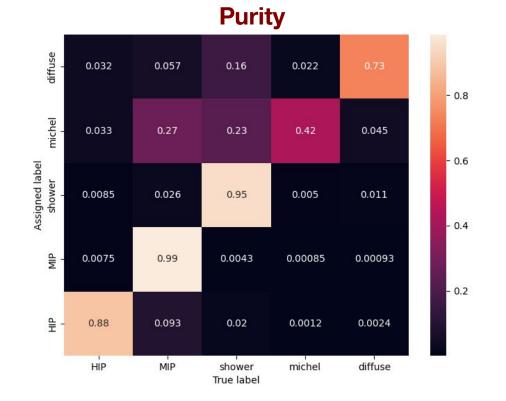
0.4

0.2



Efficiency

for element ij in the matrix, it tells us what fraction of class i in truth is classified as class *j* by the model



for element *ij* in the matrix, it tells us what fraction of class i classified by the model is actually class j in truth

Next Steps

Future Improvements

- Continue developing 3D Model
 - After the previously discussed change, the 3D Model was able to reach 94%
 Accuracy (first-pass results)
 - As further proof-of-concept, this iteration of the model also had **96% Consistency**
 - Even without "enforcing" consistency across all three planes, the model was able to learn it and bridge the accuracy-consistency gap by itself
- Hyperparameter Tuning
 - Optimal Message-Passing Iterations
 - Convergence given # of Epochs
 - Batch Size and Size of Hidden Input Dimension
- Panoptic Segmentation

Thank You!