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Background

2



Motivation

• Liquid argon time projection chambers (LArTPCs) are the detector technology for modern 

high-precision neutrino experiments, such as DUNE and MicroBooNE

• Machine learning approaches have been proven successful for reconstruction in LArTPCs, especially 

for particle identification 

• These approaches are typically based on convolutional neural networks, which treat detector 

data as images and typically require downsampling of information to fit into memory 

requirements

• LArTPC detector data is also naturally sparse

• By translating data into graphs, we can have full usage of the information without downsampling 

• We present a graph neural network (GNN) for particle identification and 3D reconstruction for 
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LArTPC Overview

• Each interaction on each 
plane is transformed into a 
graph where each hit is a 
node and edges are formed 
between nodes in a certain 
region or “window” based 
upon wires and time ticks

• We want to find ways to 
design a Neural Network, 
specifically a Graph Neural 
Network (GNN), and its 
inputs in order to recognize 
different particle topologies in 
these interactions (See arxiv:2103.06233.)

4 4

https://arxiv.org/abs/2103.06233


Original GNN Classification

Electron Neutrino Event Muon Neutrino Event

(See arxiv:2103.06233.)
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https://arxiv.org/abs/2103.06233


Previous: 4 categories (edges)

● Hadron, muon, shower, false

● Hadronic class was very general (umbrella class), difficult for the model to learn

● False class was nonphysical, also difficult for model to learn

Updated: 8 categories (hits/nodes)

● Pion, muon, kaon, hadron, shower, michel, delta, diffuse

Two New Labeling Schemes were introduced

● Simple Scheme

○ MIP(muon, delta, pion), HIP(kaon, hadron), shower, michel, diffuse

● Full Scheme

○ Muon, delta, HIP(kaon, hadron), pion, shower, michel, diffuse
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Updated Classification
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Event Visualizations (Simple)
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Message Passing and GNN 
Structure
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GNN Message Passing
Each Node in the Graph has 
associated node features 
such as hit position and 
amplitude (deposited charge) 

n = 0 n = 1 n = 2

We can explore what happens to 
information (node features) in our 
initial node after message passing 
iteration n.
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*Thanks to V for this visual!

Original GNN Design
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Graph Creation
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Working on Realistic Simulation 

n = 0

n = 1

n = 2

Connectivity in graphs becomes a notable issue for the 
message passing mechanism

*The interrupted connectivity shown in this example is due to unresponsive wire regions
(Not limited to just this case as is evident with the electron shower)
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Edge-Forming Techniques

• In response to this problem, we implemented 4 different edge-forming 
schemes
• Window (Original)

• Connects nodes within a certain (Time Tick x Wire) Window
• Delaunay 

• Computes Delaunay Triangulation of all nodes in a graph
• kNN

• Connects node with its k nearest neighbours
• Radius

• Connects node with all neighbours in a certain radius
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Dataset Statistics

• Training Set has 651,135 Graphs with an average of 352.84 Nodes per Graph
• 1 Full Interaction translates to 3 Graphs with 1 per plane (U,V,Y)

Class Breakdown across Labeling Schemes

Average Edges across Edge-Forming Schemes
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2D Results
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2D Model Configuration Summary

• 8 Total Model Configurations
• 4 Different Edge-Forming Schemes
• 2 Different Labeling Schemes (Simple and Full)
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2D Performance Summary

● Delaunay Edge-Forming Scheme performed the best for both Simple and Full Labeling 
Schemes

● Introduction of Consistency Metric
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3D SpacePoints
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How do we leverage all three views?
While having access to three different “views” of 
an event, the model does not leverage this 
information

?

19 19

V YU

3D

MIP HIPMIP

3D

MIP MIPMIP

3D

Consistent 3D Representation Inconsistent 3D Representation

3D Representation
(SpacePoint)

(See arxiv:2002.03005.)

https://arxiv.org/abs/2002.03005


Implementation of 3D SpacePoints

U

YV

Package all three planes into one Object Connect three views through 3D SpacePoints

SpacePoints (3D)

SpacePoints are tuples 
pointing to contributing 
2D hits
(at most one per plane)

U (2D)

V (2D) Y (2D)
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Linear Layers Linear Layers

Linear Layers Linear Layers

Linear Layers Linear Layers

Linear Layers

n = ?

3D SpacePointsAggregating 2D Message Passing

U

V

Y

Learn features 
of each plane

Reach consistent
conclusions

Message Passing with 3D SpacePoints
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SpacePoint Pooling and Attention
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● A single 2D hit can 
appear in multiple 
SpacePoints

● Mean/Max Pooling were 
options we tested

● We let the model learn 
which SpacePoints are 
more reliable using their 
connections
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2D/3D Result Summary



Full Model Configuration Summary

• 16 Total Model Configurations
• 4 Different Edge-Forming Schemes
• 2 Different Labeling Schemes (Simple and Full)
• 2D vs 3D
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Full Performance Summary

● 3D Results are very 
consistent, but lack in 
accuracy when compared 
to their 2D counterparts

● However, the 2D models 
have comparatively higher 
accuracy, but terrible 
consistency

● Consistency in truth across 
3D SpacePoints is around 
95-97% which suggests 
that there is learnable 
information

● How do we bridge this 
accuracy-consistency gap?
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The SpacePoint Problem
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Current Network (Simplified)
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Node Network (U)
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Enforcing vs Encouraging Consistency
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Node Network (U)

Edge Network (U)

Input Features (U)

Node Network (V)

Edge Network (V)

Input Features (V)

Node Network (Y)

Edge Network (Y)

Input Features (Y)

Upward Pass 
(2D -> 3D)

Downward Pass 
(3D -> 2D)

Linear Layers (2D -> Y)

Linear Layers (2D -> V)

Linear Layers (2D -> U)

Message Passing
Iterations

2D

3D

Crucial Connection allows Model to 
leverage 3D Informed Prediction with 
2D Informed Prediction

Distinct!

SpacePoint Node Network
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Efficiency Purity

for element ij in the matrix, it tells us what 
fraction of class i in truth is classified as 

class j by the model

Preliminary Performance Breakdown

for element ij in the matrix, it tells us what 
fraction of class i classified by the model  

is actually class j in truth
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Next Steps
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Future Improvements

• Continue developing 3D Model
• After the previously discussed change, the 3D Model was able to reach 94% 

Accuracy (first-pass results)
• As further proof-of-concept, this iteration of the model also had 96% Consistency
• Even without “enforcing” consistency across all three planes, the model was able to 

learn it and bridge the accuracy-consistency gap by itself
• Hyperparameter Tuning

• Optimal Message-Passing Iterations
• Convergence given # of Epochs
• Batch Size and Size of Hidden Input Dimension

• Panoptic Segmentation
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Thank You!


