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Current Era CMS
○ LHC 40 MHz bunch crossing rate, need to 

select events based on physics potential, 

can’t store everything

○ Two-stage trigger 

○ Level - 1 hardware based trigger, quick 

partial event reconstruction, 100 kHz 

output, < 4 μs latency. Only muon and 

calorimeter data

○ High level trigger, full event 

reconstruction with full granularity 

detector data with all parts, 1 kHz 

output, CPU farm
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High Luminosity LHC

High pile up HL-LHC

~ 10 cm

○ HL-LHC -> expected to deliver 3000 fb-1

○ Good for rare physics searches and precision 

measurements of SM 

○ Will see increased number of simultaneous proton-proton 

interactions per bunch crossing (pile up PU).

○ High PU (up to 200) bad for current era triggering

○ Level-1 trigger in HL-LHC rate would be 4 MHz to maintain 

current physics sensitivity, new trigger needed for HL-LHC 

utilising tracker tracks for the first time 
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CMS Phase-2 Upgrade 
○ Extensive upgrade program to all parts of the detector, new 

all-FPGA L1 trigger running at 750 kHz with increased latency 

to 12.5 μs -> more complex algorithms possible 

○ All new tracker, larger η (up to 3.8) coverage with inner tracker

○ Tracker tracks for the first time at L1 trigger -> full 40 MHz 

readout η < 2.4 with outer tracker

○ Track finding and L1 trigger implemented on Xilinx Ultrascale+ 

FPGAs, latency and resource usage of every algorithm 

critical
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Using tracks in L1 Trigger

○ Muon to tracker track matching in Muon trigger

○ Primary vertex finding, Track based ET
miss and 

track based Jet finding in global track trigger

○ Vertex + associated tracks
○ Cleaner energy sums

○ Better lepton isolation

○ Complex algorithms possible with reduced 

inputs

Track Finder

Global Track 
Trigger

Muon 
Trigger

Correlator trigger 
Jets, sums, lepton 

isolation Global Trigger

Vertex

Track-based 
sums and jets
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Track Finder Inputs

○ Outer tracker only, 6 barrel layers, 5 

endcap layers in red and blue 

○ Online Track Finding |η| < 2.4

○ Combinatorics too large to consider every 

detector hit even from outer tracker

77
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Along the beam pipe

Barrel Endcap
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Track Finder Inputs
○ pT modules -> 2 closely spaced 

detector layers
○ Tunable on-detector pT cut 
○ 10x-20x reduction in data
○ Online track finding possible

○ > 15k stubs per bunch crossing pT > 2 
GeV, bunch crossing rate 40 MHz

○ ~ 200 tracks pT > 2 GeV per crossing to 
reconstruct in 4 μs 

○ Exploit parallelism and regional 
division of outer tracker, multiple copies 
of track finding algorithm on 162 boards
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Hybrid Track Finding Algorithm
Tracklet Road Search

○ Form track candidates 

Track Fitting

○ Combinatorial Kalman Filter

Track Quality

○ Calculate χ2 from KF residuals or use a BDT

1010
 1010
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Tracklet Road Search
○ Find stubs in adjacent layers, tracklet 

seeds

○ Create track candidate from tracklet seed 

and project to other layers

○ Find stubs along projection and add to track 

candidate
○ Huge combinatorics -> 15k stubs, can’t consider all of them

○ Split every tracker region into further slices 

○ Only some stubs are compatible with inner and outer slices so reduce number of 

candidates

○ 8 different combinations of layers are used to form tracklet seeds -> good η efficiency 

with latency and resource usage within budget
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Track Fit - Kalman Filter

○ Start with track candidate from tracklet stage and 

iteratively add associated stubs updating track 

parameters and fit

○ Kalman Filter written for FPGA

○ Complete within 1 μs 

○ Final step to package tracks into 96-bit track 

word and route in η for rest of trigger

cosh(|η|) fit
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Track Quality

○ Not genuine or ‘fake’ track not matched to a monte carlo 

event generated track based on detector hit matching

○ Represent a significant fraction of produced tracks at high 

pT

○ Issue for downstream algorithms

○ Extra χ2 cuts performed downstream give handle on fake 

tracks Fake track 
generated from 
genuine stubs
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Track Quality

○ Not genuine or ‘fake’ track not matched to a monte carlo 

event generated track based on detector hit matching

○ Represent a significant fraction of produced tracks at high 

pT

○ Issue for downstream algorithms

○ Extra χ2 cuts performed downstream give handle on fake 

tracks 

No cuts on 
fakes

χ2 cuts on 
fakes
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Track Quality - Boosted Decision Trees

○ Trained BDT on track features:                                                               

(ɸ, η, z0 , χ
2

bend , #stubs, #missing layers interior ,  χ
2

rɸ  , χ
2

rz )

○ Lightweight BDT, depth of 3 with 60 iterations

○ Outperforms additional strict χ2 cuts used in 

downstream trigger

○ Implemented in firmware, completes inference 

within 33 ns, small fraction ( < 1%) of total 

FPGA resource usage
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Baseline Vertex Finding Chain
Produces O(100) tracks per 
event > 2 GeV, with PU 200

Track Finding 

Along the beam pipe
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Baseline Vertex Finding Chain

Track Quality

Produces O(100) tracks per 
event > 2 GeV, with PU 200

Based on χ2 parameters from 
track finding, simple cuts

Track Finding 
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Baseline Vertex Finding Chain

Vertex Finding

Track Quality

Produces O(100) tracks per 
event > 2 GeV, with PU 200

Based on χ2 parameters from 
track finding, simple cuts

Histogram all tracks in z0 
weighted by pT, find 3 
consecutive bins with highest 
pT

Track Finding 

Good vertex 
reconstruction due to 
high pT peak
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Baseline Vertex Finding Chain

Track to 
Vertex 
Association

Vertex Finding

Track Quality

Produces O(100) tracks per 
event > 2 GeV, with PU 200

Based on χ2 parameters from 
track finding, simple cuts

Histogram all tracks in z0 
weighted by pT, find 3 
consecutive bins with highest 
pT

Fixed window in z0 or multiple 
windows based on track  η 

Track Finding 

Based on track 
z0 resolution

Association 
window
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Baseline Vertex Finding Chain

Track ET
Miss 

PF/PUPPI etc.

Track to 
Vertex 
Association

Vertex Finding

Track Quality

Produces O(100) tracks per 
event > 2 GeV, with PU 200

Based on χ2 parameters from 
track finding, simple cuts

Histogram all tracks in z0 
weighted by pT, find 3 
consecutive bins with highest 
pT

Fixed window in z0 or multiple 
windows based on track  η 

Downstream Algorithms

Track Finding 
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Vertex Finding Concept
Baseline 

pT Weighting

3-Bin Convolution

Peak Finder 

z0 window

Weighted Histogram
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Vertex Finding Concept
Baseline 

pT Weighting

Weighted Histogram

End to End Neural Network 

DNN multiple track 
features (η,BDT,pT)

3-Bin Convolution

Peak Finder 

z0 window
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Vertex Finding Concept
Baseline 

pT Weighting

Weighted Histogram

End to End Neural Network 

Weighted Histogram

DNN multiple track 
features (η,BDT,pT)

3-Bin Convolution

Peak Finder 

z0 window
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Vertex Finding Concept
Baseline 

pT Weighting

Weighted Histogram

End to End Neural Network 

Weighted Histogram

Multilayered CNN3-Bin Convolution

Peak Finder 

z0 window

DNN multiple track 
features (η,BDT,pT)
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Vertex Finding Concept
Baseline 

pT Weighting

Weighted Histogram

End to End Neural Network 

Weighted Histogram

Multilayered CNN

Peak Finder

DNN multiple track 
features (η,BDT,pT)

3-Bin Convolution

Peak Finder 

z0 window
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Vertex Finding Concept
Baseline 

pT Weighting

Weighted Histogram

End to End Neural Network 

Weighted Histogram

Multilayered CNN

Peak Finder

DNN with z0 distance, track 
features and latent features

DNN multiple track 
features (η,BDT,pT)

3-Bin Convolution

Peak Finder 

z0 window
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Vertex Finding Concept
Baseline 

pT Weighting

Weighted Histogram

End to End Neural Network 

3-Bin Convolution

Peak Finder 

z0 window
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End to End Neural Networks for Vertex Finding

○ Network trained with 2 part loss function -> Event level PV 

regression, track level PV track classification

○ End-to-end -> track to vertex association optimised, influences 

vertex regression

○ 1000 parameter network, all parts trained in 1 cycle

○ Robust to changes in track finding

○ Additional vertex quality 

Differentiable
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Performance - Vertex Regression

○ Similar performance in core of residual

○ 55% reduction in tails of residual 

○ Better identification of pileup vertices removing high pT clusters

○ Similar performance with compressed networks

Log ScaleNon-Log 
Scale

QNN compressed networks, see 
later…
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Performance - Track to Vertex Association

○ Improvement in ET
miss calculation, reduction in tails of residual

○ Returns likelihood of track belonging to vertex -> flexible threshold for 

downstream algorithms vs single window based baseline approach

Baseline

Better



c.brown19@imperial.ac.uk
32

 3232

Firmware - Network Compression
Split Model 
into 3 parts ->
Weight
Pattern
Association

hls4ml - JINST 13 P07027 (2018)

Quantisation:
Restrict Bitwidths
Reduce DSP usage

Pruning:
Iteratively Remove Weights
L1 Regularization

Xilinx VU9P Latency (ns) DSPs %

NN Weight 28 1.89

QPNN Weight 14 0.00

NN Pattern 42 3.74

QPNN Pattern 30 0.00

NN Assoc. 30 6.04

QPNN Assoc. 18 0.00

8 training 
cycles

https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027
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Firmware - Network Compression
Split Model 
into 3 parts ->
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Firmware - Network Compression
Split Model 
into 3 parts ->
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Pattern
Association
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Firmware - Network Compression
Split Model 
into 3 parts ->
Weight
Pattern
Association

hls4ml - JINST 13 P07027 (2018)

Quantisation:
Restrict Bitwidths
Reduce DSP usage

Pruning:
Iteratively Remove Weights
L1 Regularization

Xilinx VU9P Latency (ns) DSPs %

NN Weight 28 1.89
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NN Pattern 42 3.74

QPNN Pattern 30 0.00

NN Assoc. 30 6.04

QPNN Assoc. 18 0.00

8 training 
cycles
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Implementation

○ Insert networks within existing baseline firmware
○ Overall top entities controlling input output signals 

of networks
○ Targeted ⅓ Xilinx VU9P running at 360 MHz 
○ 108 ns total algorithm latency (2x baseline 

approach, still faster than required latency to be 
passed downstream)
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Implementation

○ Insert networks within existing baseline firmware
○ Overall top entities controlling input output signals 

of networks
○ Targeted ⅓ Xilinx VU9P running at 360 MHz 
○ 108 ns total algorithm latency (2x baseline 

approach, still faster than required latency to be 
passed downstream)

Floor plan of VU9P chip 
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○ Testing algorithms on physical hardware & 
testing communication between L1 subsystems

○ Individually tested parts of Track Finder chain 
and Baseline Vertexing approach

○ Ran board to board tests of Track Finder and 
Vertexing, can measure latency between 
subsystems

○ High speed fibre optics up to 28 Gb/s

Commissioning and Testing
5 Board-Board Fibres

Vertex BoardTrack Finder Board
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○ Testing algorithms on physical hardware & 
testing communication between L1 subsystems

○ Individually tested parts of Track Finder chain 
and Baseline Vertexing approach

○ Ran board to board tests of Track Finder and 
Vertexing, can measure latency between 
subsystems

○ High speed fibre optics up to 28 Gb/s

Commissioning and Testing

Vertex BoardTrack Finder Board
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○ Testing algorithms on physical hardware & 
testing communication between L1 subsystems

○ Individually tested parts of Track Finder chain 
and Baseline Vertexing approach

○ Ran board to board tests of Track Finder and 
Vertexing, can measure latency between 
subsystems

○ High speed fibre optics up to 28 Gb/s

Commissioning and Testing

Vertex FPGA 
Floorplan

Track Finder 
FPGA Floorplan
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○ Testing algorithms on physical hardware & 
testing communication between L1 subsystems

○ Individually tested parts of Track Finder chain 
and Baseline Vertexing approach

○ Ran board to board tests of Track Finder and 
Vertexing, can measure latency between 
subsystems

○ High speed fibre optics up to 28 Gb/s

Inputs from Track Finder 
Emulation

Vertex Output

Track 
Finder

Vertex

Commissioning and Testing
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Track Finder
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Kalman Filter

Track Quality

Global Track Trigger

Baseline Approach

Improved Baseline 

End-to-end NN approach

Firmware Implementation

Demonstration

Expand small scale tests to full track finding 
chain, displaced track finding at L1

End-to-end in board to board tests, vertex 
quality and large scale physics studies

Expand integration tests to larger parts of L1 
trigger with multi-board tests

Future plans….



Tracker Inputs

Track Finder

Tracklet Road Search

Kalman Filter

Track Quality

Global Track Trigger

Baseline Approach

Improved Baseline 

End-to-end NN approach

Firmware Implementation

Demonstration

pT modules making online track finding possible

Hybrid algorithm performing online track 
finding within 4 μs

New end-to-end neural network approach to 
vertex finding and association outperforming 
previous approaches, running on an FPGA.
More info -> CMS-CR-2022-018

First tests of Track Finder and L1 trigger 
subsystems with board to board 
communications

http://cds.cern.ch/record/2801638?ln=en


Backup
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CMS Phase-2 Upgrade 
○ Brand new tracker -> radiation tolerant, 

200m2 of silicon, coverage up to η = 3.8

○ Outer tracker for L1 trigger up to η = 2.4

○ Muon systems increased η coverage and 

electronics

○ Barrel calorimeter new electronics and lower 

ECAL temperature

○ All new HGCAL end cap calorimetry, 4D 

(space-time) shower measurement

○ High granularity readout 1cm2

○ Precision timing < 50 ps

4646
 4646
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CMS Phase-2 Upgrade - Trigger 

4747
 4747

○ ATCA based cards for different trigger subsystems

○ Xilinx Ultrascale+ FPGAs used throughout > 200 FPAs

○ Optical link speeds up to 28 Gb/s 

○ Dedicated scouting system at 40 MHz

○ Full event reconstruction at L1, using particle flow 

algorithms, all sub-detector information used to reconstruct 

jets, missing ET and leptons

○ Vertex used in Pile Up Per Particle Identification (PUPPI) to 

filter particles most likely to come from primary vertex
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Track Finder System
○ 9 regions in ɸ

○ Stubs streamed at 40 MHz to Data Trigger and 

Control (DTC)

○ DTCs route stubs to Track Finder (TF) boards

○ 18 TF boards per nonant, processing different 

events

○ Nonant processing occurs in parallel, no 

communication between TF boards

○ Streamed to downstream trigger in 18 streams, 

+/- η in 9 nonants

○ All implemented on FPGAs

4848
 4848
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Track Finding Firmware Implementation

○ Each tracklet step implemented in HLS
‒ Sub chain tested in HW

‒ Barrel only chain synthesised, being optimised 

○ KF and final trigger output written in VHDL
‒ Both barrel only and full config tested in HW

○ Top level VHDL controls overall dataflow and multiple 

instances of various modules

○ Each module individually synthesized meeting timing and 

matching emulators
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BDT For Track Quality

○ Trained on TTbar PU200 sample, 170K events

○ Using Conifer Package -> generate HLS code

○ Tunable fixed point precision <10,5> used

○ Targeted VU9P 240MHz, Initiation Interval = 1 cycle

Model Python AUC HLS AUC Latency 
(cycles)

LUT % FF % DSP %

BDT 0.986 0.981 3 0.140 0.027 0.0

5050
 5050

https://github.com/thesps/conifer
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Vertex Finding Concept
Extended Baseline 

pT Weighting +

Weighted Histogram

1/η2 additional 
weighting, 
approximation of 
curve on slide 12

3-Bin Convolution

Peak Finder 

z0 window



c.brown19@imperial.ac.uk
52

 5252

Vertex Finding Concept

pT Weighting + χ2 cuts

Weighted Histogram

Extended Baseline 

Vertex Finding Concept

3-Bin Convolution

Peak Finder 

z0 window
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Vertex Finding Concept

pT Weighting + BDT cut

Weighted Histogram

Extended Baseline 

3-Bin Convolution

Peak Finder 

z0 window
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Fast Histo Cuts
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Learning Track Weights

○ Network learns ideal track weighting into histogram

○ Histogram part of Network training cycle filled with: 

○ Differentiated to give:

○ Passed through convolutional network and differentiable 

ArgMax to give peak


