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Introduction: LHCb detector

[LHCb detector link]
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https://lhcb-public.web.cern.ch/en/LHCb-outreach/multimedia/LHCbDetectorpnglight1.png


Introduction: LHCb detector 

[CERN Courier: LHCb’s momentous metamorphosis]

02-06-2022 CTD2022, Princeton University         Brij@cern.ch                               3

https://cerncourier.com/a/lhcbs-momentous-metamorphosis/


Introduction: Upgrade 

[LHCB-TDR-018]
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https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf


Introduction: LHCb RTA data flow. 

Alessandro Scarabotto

Real time alignment, talk by Florian Reiss
[LHCb-FIGURE-2020-016]
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Introduction: Tracking system
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Introduction: Tracking system

VELO: Silicon pixel detector, 52 planes
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Introduction: Tracking system

UT: Silicon strip detector, 4 planesVELO: Silicon pixel detector, 52 planes
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Introduction: Tracking system

SciFi: Scintillating Fibre detector 
(12 planes of 2x2.5 m long ) )

• 3 stations (T1, T2, T3) with 4 layers 
each in x-u-v-x configuration 

• u and v-layers are tilted by a stereo 
angle of 5o in the vertical plane 

• Two halves per layer with 5 modules 
(6 for T3) with 8 scintillating fibre
mats 

VELO: Silicon pixel detector, 52 planes UT: Silicon strip detector, 4 planes
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Introduction: Tracking system

SciFi: Scintillating Fibre detector 
(12 planes of 2x2.5 m long ) )

• Standalone SciFi Seeding at HLT1

VELO: Silicon pixel detector, 52 planes
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UT: Silicon strip detector, 4 planes
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Introduction: Tracking system

SciFi: Scintillating Fibre detector 
(12 planes of 2x2.5 m long ) )

• Forward tracking:  Velo tracks are 
extended to UT and then to SciFi to 
create long tracks (Baseline HLT1)

• VeloSciFi Track matching: SciFi seeds are 
matched with Velo tracks to create long 
tracks. (UT hits can also be added) 

VELO: Silicon pixel detector, 52 planes
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UT: Silicon strip detector, 4 planes
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Introduction: Tracking system

This talk is about two new algorithms implemented at HLT1 level on GPUs

• Standalone SciFi Seeding
• VeloSciFi Track matching (Long tracks) (alternate to current forward tracking)  
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SciFi seeding

SciFi Seeds:
• +Velo tracks → produce Long tracks (Alternative to current forward tracking)
• +UT hits        → produce Downstream tracks
• Help in ECAL PID (matching a track to a cluster helps distinguish electrons from photons).
• Extending physics reach of LHCb – See talk by Izaac Sanderswood 
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Downstream track

https://indico.cern.ch/event/1103637/contributions/4821870/


➢ Standalone SciFi seeding algorithm in HLT1
✓ 12 layer with ~450 hits each (average)
✓ Residual magnetic field and 3 stations spread over 1.8 meters
✓ Fibers 2.7 meters long 

➢ Two cases optimized for varying initial layers to account for hit inefficiencies 

➢ Each iteration consists of two main components of algorithm 

Seeding_XZ

Seeding_confirmTracks

SciFi hits 

SciFi Seed_XZ

SciFi seeds

Add UV hits to 
confirmTracks
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SciFi seeding
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SciFi seeding: Seed_XZ

XZ combinatorics = 
n1st hits x n2nd hits x n3rd hits

SciFi Hits
Doublets searched in T1 & T3, 
(P > 3Gev/c & origin at 0,0,0)

for each doublet charge-
momentum estimation, 

narrower window for 3rd hit

3 hit combinations with 
hits from T2 station, taking 

bending into account 



SciFi Hits
Doublets searched in T1 & T3, 
(P > 3Gev/c & origin at 0,0,0)

for each doublet charge-
momentum estimation, 

narrower window for 3rd hit

3 hit combinations with 
hits from T2 station, taking 

bending into account 

3 hit + Parabola with cubic 
correction estimation on MC to 

predict positions in the 
remaining layers 

Add remaining hits, accept 
candidates with at least two 

additional hits from remaining layers  
i.e min 5 out of 6 possible hits 

Build 3x3 matrix for track fit with all 
contributing hits, reject track 

candidates with χ2/ndof worse than 
a fixed value (<6)

Seed_XZ
candidates

XZ combinatorics = 
n1st hits x n2nd hits x n3rd hits

02-06-2022 CTD2022, Princeton University         Brij@cern.ch                               16

SciFi seeding: Seed_XZ



Seed_XZ candidates 
• Still need to remove ghosts (still around 50-60% of XZ segments)
• Need to measure parameters of the track

Seeding_confirmTracks: Add U/V hits (6 hits)
1. For each XZ segment, open a very large tolerance window in y for initial UV-

layer .
• Many different fibres (black) cross a given x(z) hypothesis (red).
• Each fibre crosses that hypothesis at a different y, giving a y 

measurement.

2. For all hits collected in that window, determine the corresponding y and t
y

→ 
y(z).

3. For all other layers, open a much narrower tolerance window around that 
hypothesis update  t

y
at each hit found.

4. Accept the tracks with at least 4 hits in UV

5. Fit the candidates with  a linear model in Y and keep the ones with best χ2
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Seeding_ConfirmTracks



Track Matching (SciFi + Velo)

Algorithm approach:  

• SciFi seeds O(80) matched to Velo tracks O(100) without UT hits

• Start with SciFi seeds and parallelize over SciFi loops

• Velo/SciFi seeds extrapolated to magnet as lines (“Kink” approximation)

• Magnetic field and bending in y is parametrized with simulation

• Minimal requirements on χ2 and slope to reduce combinatorics and fakes

• Clone killing: tracks that share a VELO track are compared and only the 

one with the best χ2 is kept

SciFi hits 

SciFi Seed_XZ

SciFi seeds

+ UV hits to 
confirmTracks

Scifi-Velo
Matching

Long tracks 

Velo tracks 

SciFi Decoding

Velo track 
filtering (New)
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GPU implementation 

✓ Event level parallelization from framework 

✓ Minimized global memory usage

✓ SciFi hits caching preferred in shared memory of GPU which is faster as 
compared to global memory 

✓ For each XZ track in parallel, collect UV hits in 2 different layers

✓ Binary search implementation for making pair candidates from hits

✓ Optimal block size on A5000  (64 KB shared + 32 KB L1 configuration) 

➢ 8kb of shared memory per block => 4 warps per block (128 threads)

✓ Simplified approach in the confirm_track step to add UV information as 
compared to HLT2 

✓ For clone killing using a shared memory voting algorithm, 
✓ For each track candidate in parallel, compute a score based on χ2 and make 

decision for rejection of clones

GPU implementation features for both SciFi seeding and Track Matching   

Performance of a 
generic binary search 
(not LHCb specific)
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Performance: Efficiency

Efficiency

• long tracks from B decays (p 
> 5GeV): ~83% (92%) –

• long electrons from B decays 
(p > 5GeV): ~ 70% (75%) –

• Increased efficiency w.r.t the 
baseline approach without  
cuts on pT.
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SciFi seeding VeloSciFi TrackMatching

[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Performance: Ghost rates

Ghost rate
~9% for all reconstructed 
tracks

~5% for p > 3GeV, PT > 0.5GeV 

02-06-2022 CTD2022, Princeton University         Brij@cern.ch                               21

VeloSciFi TrackMatching

[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Performance (Throughput)  
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Performance (Throughput)  

For details of HLT1 see talk by Alessandro Scarabotto
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[LHCb-FIGURE-2022-010]

https://indico.cern.ch/event/1103637/contributions/4821826/
http://cds.cern.ch/record/2811214


Summary

➢ Presented a new GPU-based Scintillating Fibre seeding algorithm for 
HLT1 at LHCb.

➢ An alternative long track reconstruction based on SciFi seeds + Velo
track matching.

➢ Comparable throughput with Forward-with-UT, similar efficiencies at 
high momentum, without any hard cut at low pT.

➢ Now we have SciFi seeds in HLT1 which are basic building blocks for 
downstream tracking.

SciFi hits 

SciFi Seed_XZ

SciFi seeds

+ UV hits to 
confirmTracks

Scifi-Velo
Matching

Long tracks 

Velo tracks 

UT Hits / Tracks 

Downstream 
tracks

SciFi Decoding
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Thank you
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Backup: Performance (Momentum resolution)  

Momentum resolution for HLT1 long tracks from B decays as a function of 
momentum p. The plot shows reconstructed tracks from 5000 simulated B0s → φφ
events where the seeding + matching approach is used for the reconstruction.
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Backup: Performance (Momentum resolution comparison)  

Comparison of the momentum resolution between HLT1 long tracks from the HSM (without UT) (black) and the 
forward tracking (with UT) (red) from B decays as function of momentum p. The plots are showing reconstructed 
tracks from 5000 simulated B0s → φφ events. Here the main difference in the high-p region is mainly due to the 
HSM algorithms running without UT which is the scenario for the data taking in the first year of Run 3
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Backup: Performance (Efficiencies SciFi seeds)  

Tracking efficiencies for HLT1 SciFi seeds from B decays as function of momentum p and 
transverse momentum pT and pseudo-rapidity η. The plots are showing reconstructed SciFi seeds 
from 5000 simulated B0
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Backup: Performance (Efficiencies Scifi + Velo matching)  

Tracking efficiencies for HLT1 long tracks from B decays as function of momentum p and transverse 
momentum pT and pseudo-rapidity η. The plots are showing reconstructed tracks from 5000 simulated 
B0 events where the seeding + matching approach is used for the reconstruction.
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Backup: Performance (Efficiencies comparision of SciFi x Velo vs Matching )  

Comparison of the tracking efficiency for HLT1 long tracks from B decays with the product of the tracking efficiencies from VELO
tracks and SciFi seeds (left) as function of momentum p and transverse momentum pT and pseudo-rapidity η as well as their ratios 
which is corresponding to the efficiency of the matching (right). The plots are showing reconstructed tracks from 5000 simulated
B0s → φφ events where the VELO tracking, SciFi seeding and seeding + matching approach are used for the reconstruction
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Backup: Performance (Efficiencies Electrons and non-electrons)  

Tracking efficiencies for HLT1 electron (blue) and non-electron (black) SciFi seeds (left) and VeloSciFi tracks 
(right) from B decays as function of momentum p, transverse momentum pT and pseudo-rapidity η. The 
plots are showing reconstructed tracks from 5000 simulated B0s → φφ (black) and B0 → K∗0e+e− (blue)
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Backup: Performance (Efficiency comparison b/w forward vs SciFi+Velo Matching )  

Comparison of the tracking efficiencies between HLT1 long tracks from the Velo-SciFi matching (black) and the 
forward tracking with UT (red) from B decays as function of momentum p and transverse momentum pT and 
pseudo-rapidity η. The plots are showing reconstructed tracks from 5000 simulated B0s → φφ events.
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214


Backup: Performance (Ghost rates comparison of long tracks from forward vs Scifi+Velo matching )  

Comparison of the ghost rates between HLT1 long tracks from the Velo-SciFi matching (black) and the forward tracking with 
UT (red) from B decays as function of momentum p and transverse momentum pT and pseudorapidity η. The plots are 
showing reconstructed tracks from 5000 simulated B0s → φφ events.
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[LHCb-FIGURE-2022-010]

http://cds.cern.ch/record/2811214

