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Outlook
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• Current ATLAS jet flavor tagging

• Motivation for a new tagger

• GN1: the new tagger

• Performance

• Summary

• Aim is to identify b,c and light flavored jets 
• Main signatures of jets initiated by b-hadron decay - 

• Incompatibility of track with PV 
• Presence of secondary vertex



Jet Flavor Tagging in ATLAS
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The low level taggers
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NNLow level Variables 
(Jet, tracks) pb, pc, puPhysics info (Significant loss in performance)

• An “all-in-one” jet tagger would be ideal, as -
• It’ll remove the dependency on low level taggers
• Easy to train, easy to maintain
• Can be more easily optimized for a wide variety of use cases

• But in practice, it’s tricky (need the “Physics info” from the low level taggers!)

N. Kakati, S. V. StroudWeizmann Institute of Science, UCL

• Low level taggers are important



GN1 as a solution
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• GN1 - a Graph Neural Network (GNN) based flavor 
tagging algorithm

• Instead of using “Physics info” as inputs, we can 
define them as learning objectives

• Additional training objectives will guide the model 
to learn a relevant representation of the jets

Proposed by Jonathan Shlomi et al. 
https://arxiv.org/pdf/2008.02831.pdf
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The input to GN1
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The jet inputs are concatenated with each track’s input

• leptonID - is the track used in reconstruction of an 
electron, muon or neither 

• We’ll look at plots for two models (later) -  
• GN1 (baseline, without leptonID) 
• GN1Lep (with leptonID)
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 = number of jet features,     = number of track features 
 = number of tracks
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The complete architecture (GN1)
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b-tagging performance

• The output probabilities of the model 
( ) are combined to form a 
discriminant 

• GN1 shifts the b-jet distribution to 
higher value, and c/light jet 
distributions are shifted towards lower 
value

• Enhanced b vs c/light separation with 
GN1

pb, pc, pl
Db
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b-tagging performance

• Significant improvement in c/light rejection, for 
given b-efficiency

• For ttbar (a representative of SM processes, 
covers the low pT region), at 70% b-efficiency 
• c-rejection - 2.4x (GN1)
• l-rejection - 1.7x (GN1)

• For Z’ (a representative of BSM processes, 
covers the high pT region), at 30% b-efficiency 
• c-rejection - 3x (GN1)
• l-rejection - 6.2x (GN1)

• Including leptonID as a track input also shows 
further improvement (GN1Lep)
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c-tagging performance
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•

• For ttbar, at 25% c-efficiency
• b-rejection - 2x (GN1)
• l-rejection - 2x (GN1)

• For Z’, at 25% c-efficiency
• b-rejection - 1.6x (GN1)
• l-rejection - 2x (GN1)

Dc = log
pc

(1 − fb)pl + fbpb
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Ablations

• How important are the auxiliary tasks?

• Significant degradation in performance 
when removing the auxiliary tasks (GN1 
No Aux)

• Track classification (GN1 TC) and 
vertexing (GN1 Vert) bring similar level 
of improvement

• Both auxiliary objectives combined show 
the best performance, demonstrating 
they are complementary
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Performance of the Auxiliary tasks

• Vertexing - 
• Initial studies show that GN1 can find ~80% of 

the displaced vertices from b-hadron decays

• Track classification -
• Compare to baseline Multi layer Perceptron (MLP) 

that processes one track at a time

• GN1 outperforms the MLP on both ttbar and Z’

• Explanations -

• Mixing of information among tracks helps

• Jet classification and vertexing can be 
considered as aux tasks, improving tracks 
classification
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Flexibility of GN1
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• On top of the improved performance, GN1 is also quite flexible

• Reduced components makes it easier to optimize the tagger for new region of phase space, or when 
the detector and the charged particle reconstruction are updated

• Adding new physics signatures that can help in flavor tagging is also straightforward

• In principle, it can just be another auxiliary task!

• Can easily accommodate new sets of variables (lepton vars etc)
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Summary
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• New Graph Neural Network based jet flavor tagging tool developed at ATLAS

• An “all-in-one” tagger!

• Shows improved performance with respect to DL1r on simulation

• The key improvement comes from the auxiliary training objectives -
• Vertexing 
• Track origin classification

• Quite flexible and can easily be adapted to other specific used cases

• PUB Note (ATL-PHYS-PUB-2022-027) released very soon

• Fully implemented in ATLAS software

• Calibration studies on data will follow soon
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Summary
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• New Graph Neural Network based jet flavor tagging tool developed at ATLAS

• An “all-in-one” tagger!

• Shows improved performance with respect to DL1r on simulation

• The key improvement comes from the auxiliary training objectives -
• Vertexing 
• Track origin classification

• Quite flexible and can easily be adapted to other specific used cases

• PUB Note (ATL-PHYS-PUB-2022-027) released very soon

• Fully implemented in ATLAS software

• Calibration studies on data will follow soon

N. Kakati, S. V. StroudWeizmann Institute of Science, UCL

Thank you for listening…



Backup
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Implementation in ATLAS
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+

Training In ATLAS Software

• Athena (The ATLAS software) has support for ONNXRuntime, which can run ONNX models
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