# Jet Flavor Tagging Using Graph Neural Networks

Nilotpal Kakati, Sam Van Stroud, Maxence Draguet, Gabriel Facini, Eilam Gross, Sebastien Rettie, Tim Scanlon, Jonathon Shlomi

On behalf of the ATLAS collaboration

(nilotpal.kakati@cern.ch)









7th International CTD Workshop 1 June, 2022

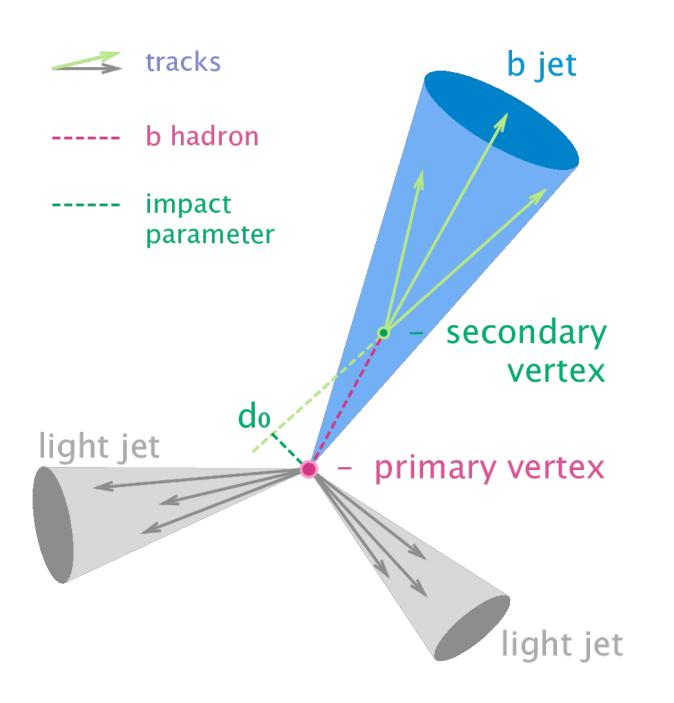




#### Outlook

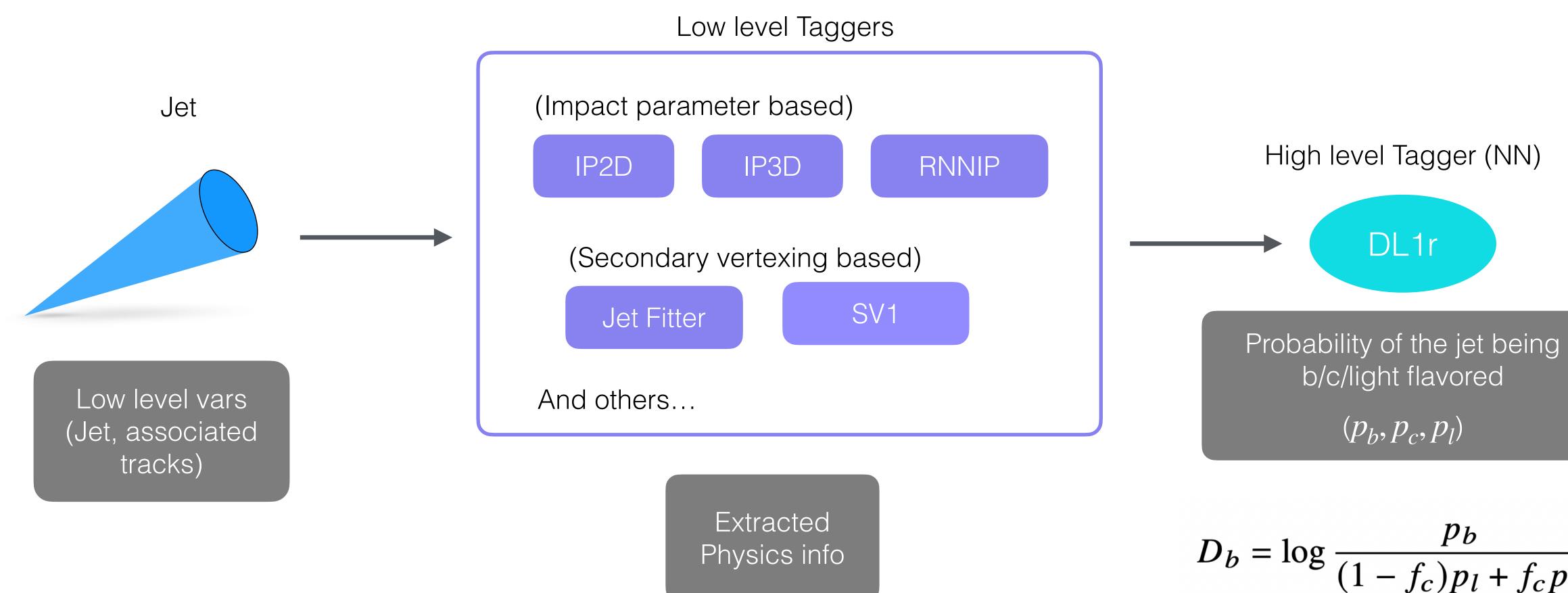
- Current ATLAS jet flavor tagging
- Motivation for a new tagger
- GN1: the new tagger
- Performance
- Summary





- Aim is to identify b,c and light flavored jets
- Main signatures of jets initiated by b-hadron decay -
  - Incompatibility of track with PV
  - Presence of secondary vertex

## Jet Flavor Tagging in ATLAS



Weizmann Institute of Science, UCL



 $D_b = \log \frac{p_b}{(1 - f_c)p_l + f_c p_c},$ 

## The low level taggers

Low level taggers are important 



- An "all-in-one" jet tagger would be ideal, as -
  - It'll remove the dependency on low level taggers
  - Easy to train, easy to maintain  $\bullet$
  - Can be more easily optimized for a wide variety of use cases lacksquare
- But in practice, it's tricky (need the "Physics info" from the low level taggers!)  $\bullet$

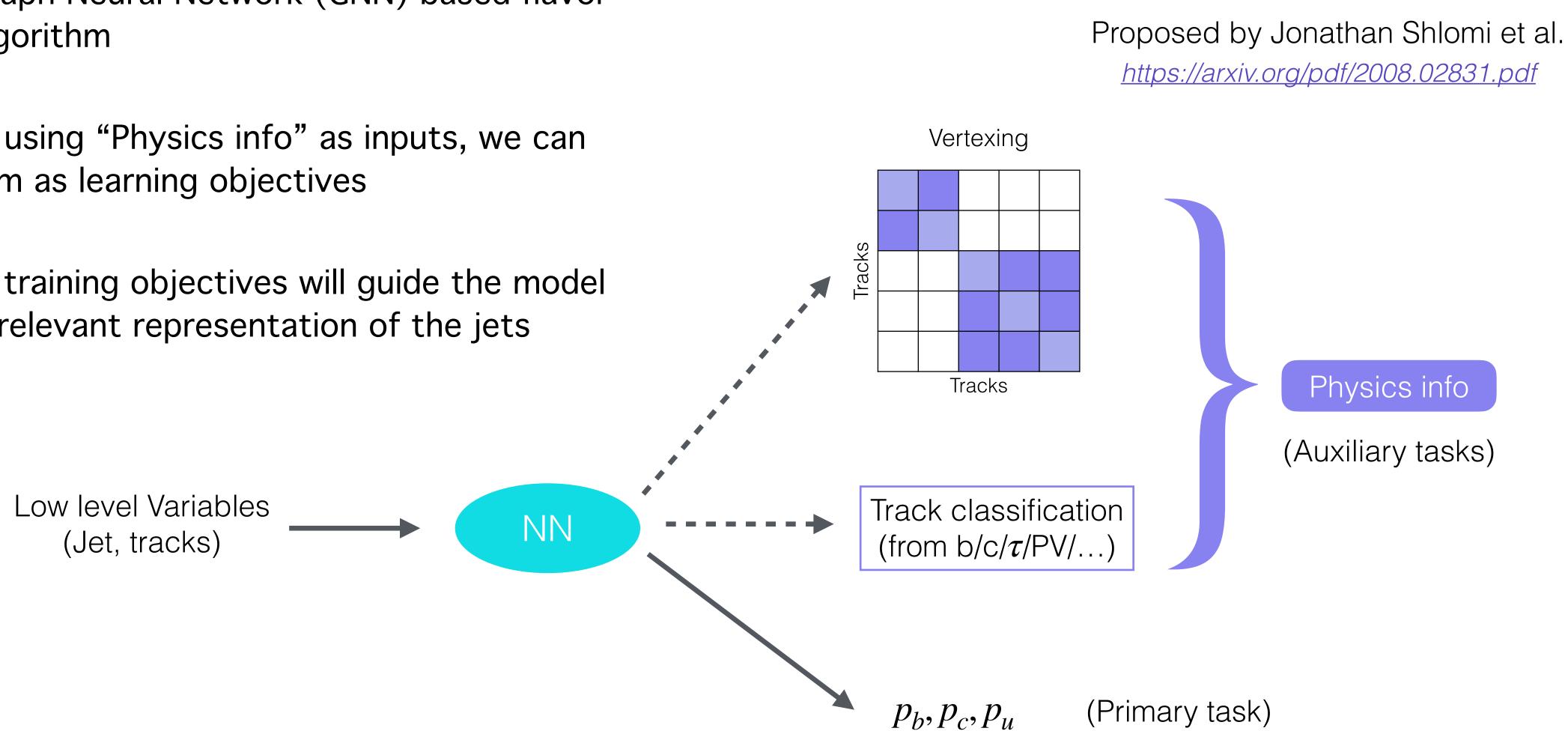
Weizmann Institute of Science, UCL





#### **GN1** as a solution

- GN1 a Graph Neural Network (GNN) based flavor  $\bullet$ tagging algorithm
- Instead of using "Physics info" as inputs, we can  $\bullet$ define them as learning objectives
- Additional training objectives will guide the model to learn a relevant representation of the jets



Weizmann Institute of Science, UCL

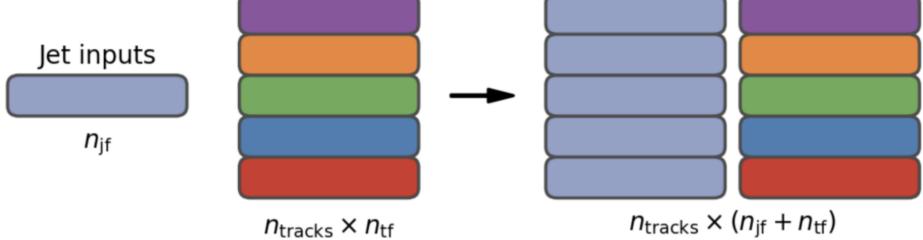


### **The input to GN1**

| Jet Input          | Description                                                         |  |  |
|--------------------|---------------------------------------------------------------------|--|--|
| $p_{\mathrm{T}}$   | Jet transverse momentum                                             |  |  |
| $\eta$             | Signed jet pseudorapidity                                           |  |  |
| <b>Track Input</b> | Description                                                         |  |  |
| q/p                | Track charge divided by momentum                                    |  |  |
| $\mathrm{d}\eta$   | Pseudorapidity of the track, relative to the jet $\eta$             |  |  |
| $\mathrm{d}\phi$   | Azimuthal angle of the track, relative to the jet $\phi$            |  |  |
| $d_0$              | Closest distance from the track to the PV in the longitudinal plane |  |  |
| $z_0 \sin \theta$  | Closest distance from the track to the PV in the transverse plane   |  |  |
| $\sigma(q/p)$      | Uncertainty on $q/p$                                                |  |  |
| $\sigma(	heta)$    | Uncertainty on track polar angle $\theta$                           |  |  |
| $\sigma(\phi)$     | Uncertainty on track azimuthal angle $\phi$                         |  |  |
| $s(d_0)$           | Lifetime signed transverse IP significance                          |  |  |
| $s(z_0)$           | Lifetime signed longitudinal IP significance                        |  |  |
| nPixHits           | Number of pixel hits                                                |  |  |
| nSCTHits           | Number of SCT hits                                                  |  |  |
| nIBLHits           | Number of IBL hits                                                  |  |  |
| nBLHits            | Number of B-layer hits                                              |  |  |
| nIBLShared         | Number of shared IBL hits                                           |  |  |
| nIBLSplit          | Number of split IBL hits                                            |  |  |
| nPixShared         | Number of shared pixel hits                                         |  |  |
| nPixSplit          | Number of split pixel hits                                          |  |  |
| nSCTShared         | Number of shared SCT hits                                           |  |  |
| nPixHoles          | Number of pixel holes                                               |  |  |
| nSCTHoles          | Number of SCT holes                                                 |  |  |
| leptonID           | ID of reconstructed lepton (if present)                             |  |  |



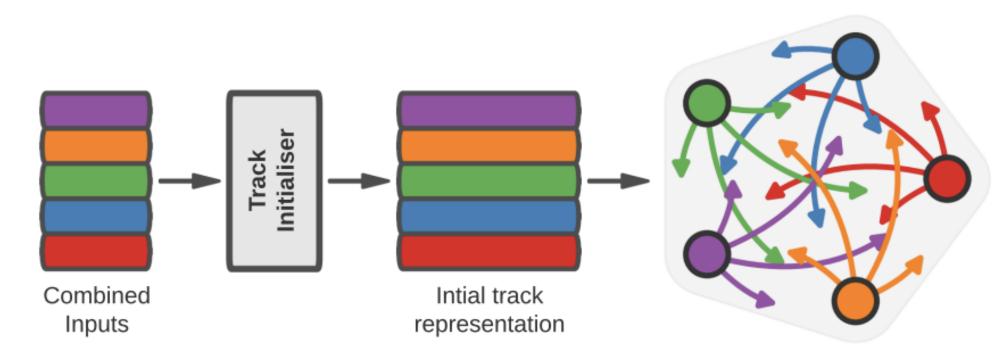
#### The jet inputs are concatenated with each track's input **Combined Inputs** Track inputs



 $n_{if}$  = number of jet features,  $n_{tf}$  = number of track features  $n_{tracks}$  = number of tracks

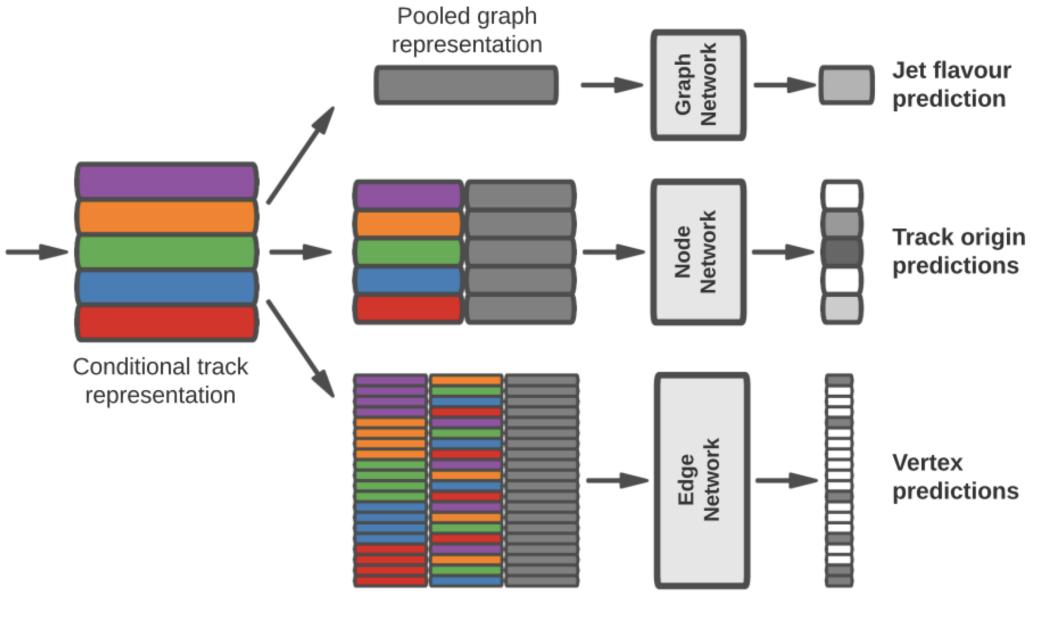
- leptonID is the track used in reconstruction of an electron, muon or neither
- We'll look at plots for two models (later) -
  - GN1 (baseline, without leptonID)
  - GN1Lep (with leptonID)

#### The complete architecture (GN1)



Weizmann Institute of Science, UCL

GNN





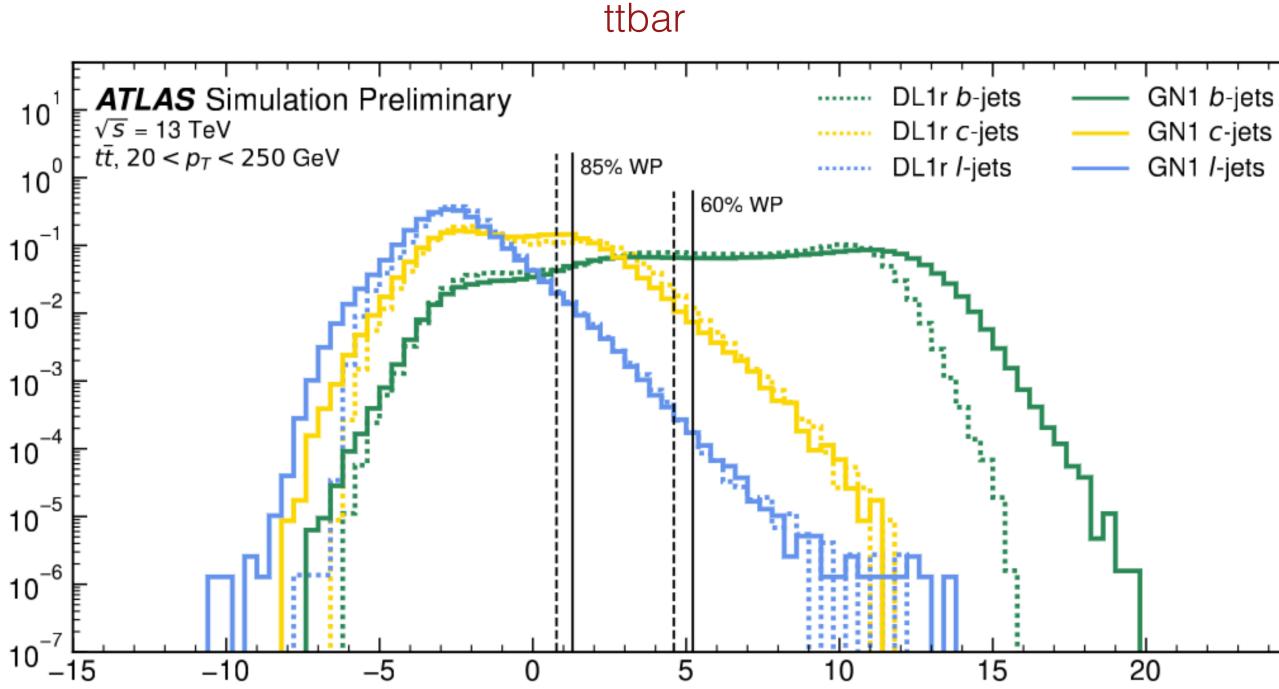
### **b-tagging performance**

- The output probabilities of the model  $(p_b, p_c, p_l)$  are combined to form a discriminant  $D_{h}$
- GN1 shifts the b-jet distribution to higher value, and c/light jet a.u distributions are shifted towards lower value
- Enhanced b vs c/light separation with GN1

Weizmann Institute of Science, UCL



 $D_b = \log \frac{p_b}{(1 - f_c)p_l + f_c p_c},$ 



N. Kakati, S. V. Stroud

8



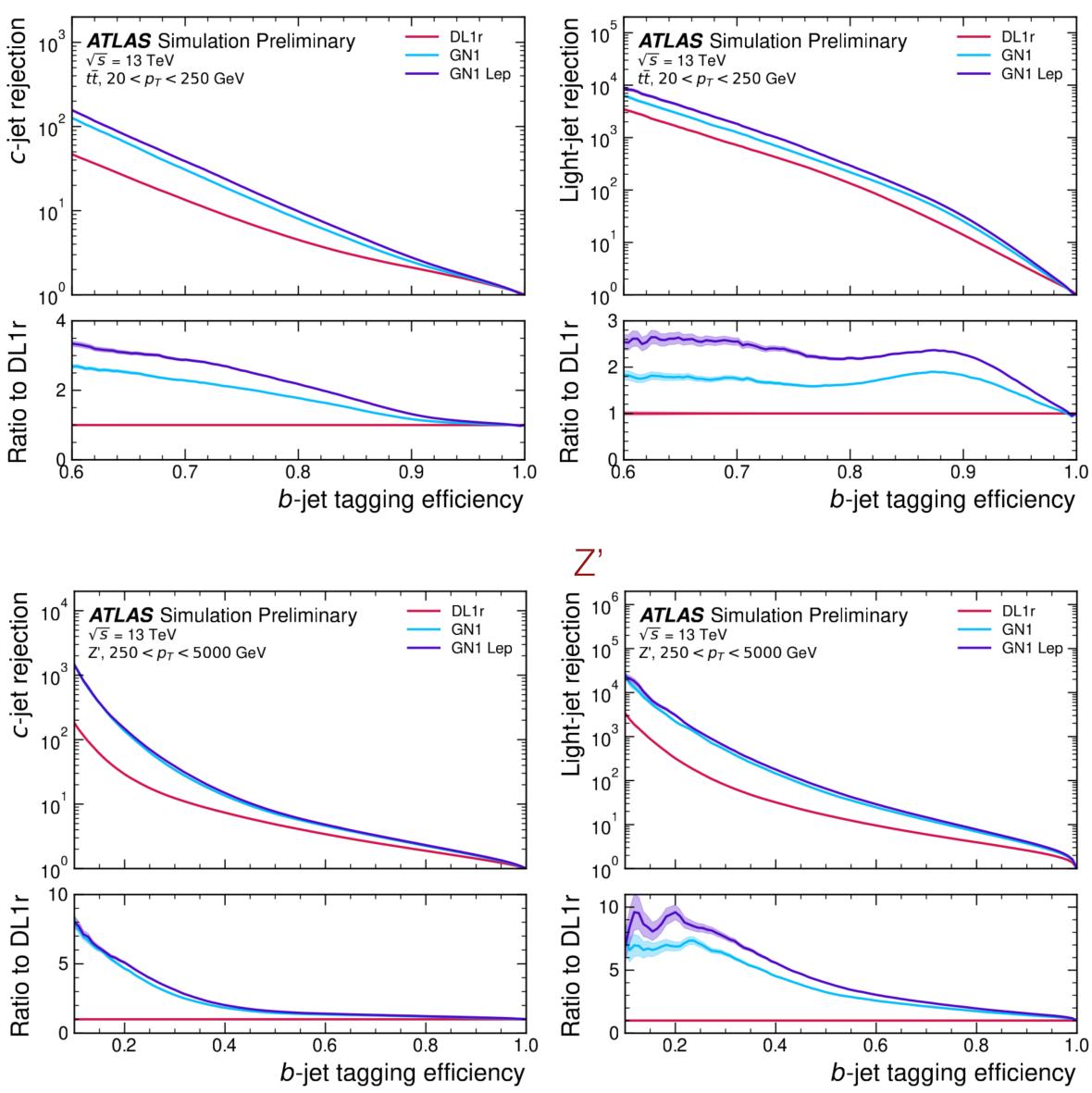
## **b-tagging performance**

- Significant improvement in c/light rejection, for given b-efficiency
- For ttbar (a representative of SM processes, covers the low pT region), at 70% b-efficiency
  - c-rejection 2.4x (GN1)
  - I-rejection 1.7x (GN1)
- For Z' (a representative of BSM processes, covers the high pT region), at 30% b-efficiency
  - c-rejection 3x (GN1)
  - I-rejection 6.2x (GN1)
- Including leptonID as a track input also shows further improvement (GN1Lep)

Weizmann Institute of Science, UCL







#### c-tagging performance

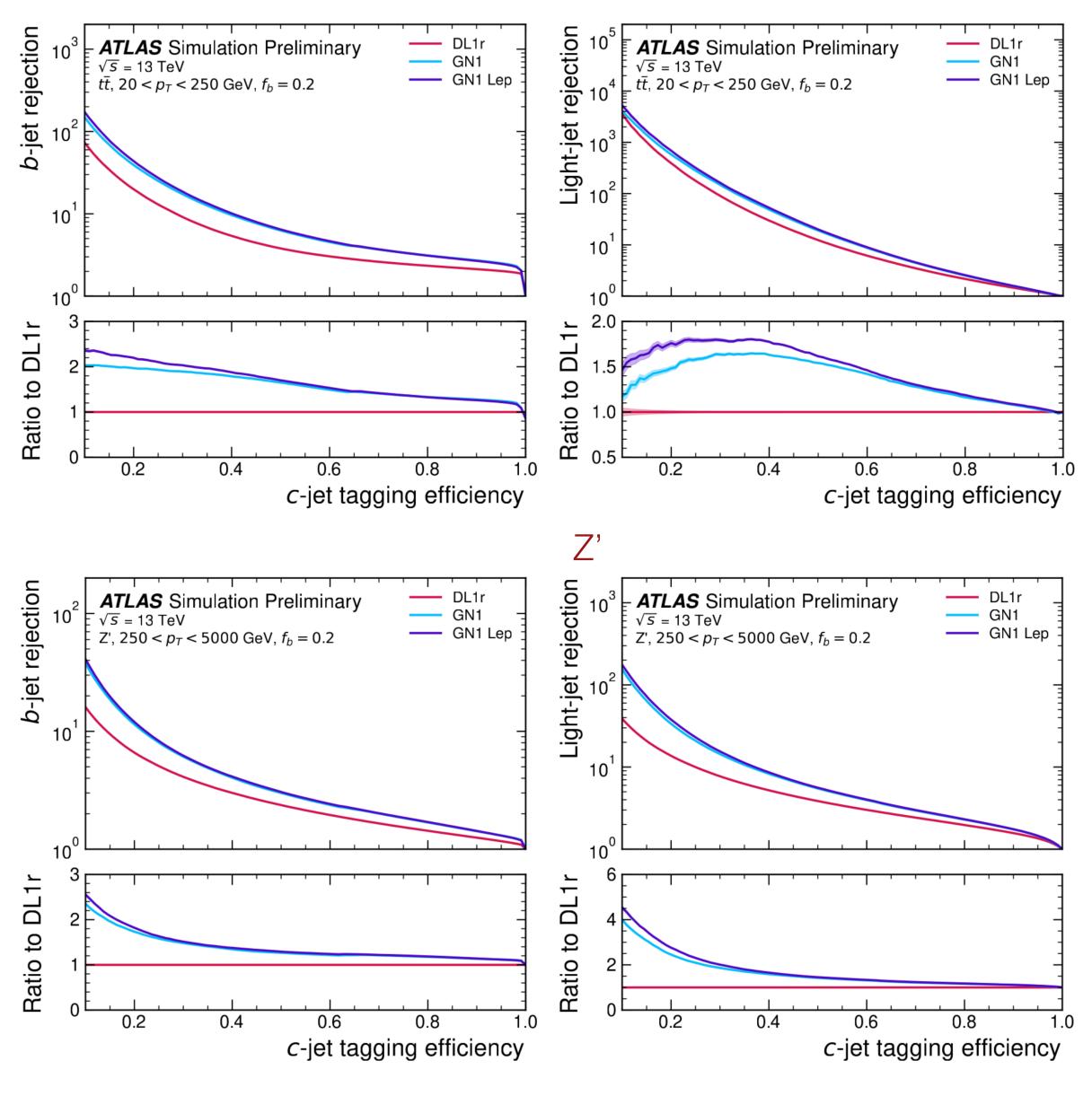
• 
$$D_c = log \frac{p_c}{(1 - f_b)p_l + f_b p_b}$$

- For ttbar, at 25% c-efficiency
  - b-rejection 2x (GN1)
  - I-rejection 2x (GN1)
- For Z', at 25% c-efficiency
  - b-rejection 1.6x (GN1)
  - I-rejection 2x (GN1)

Weizmann Institute of Science, UCL



#### ttbar

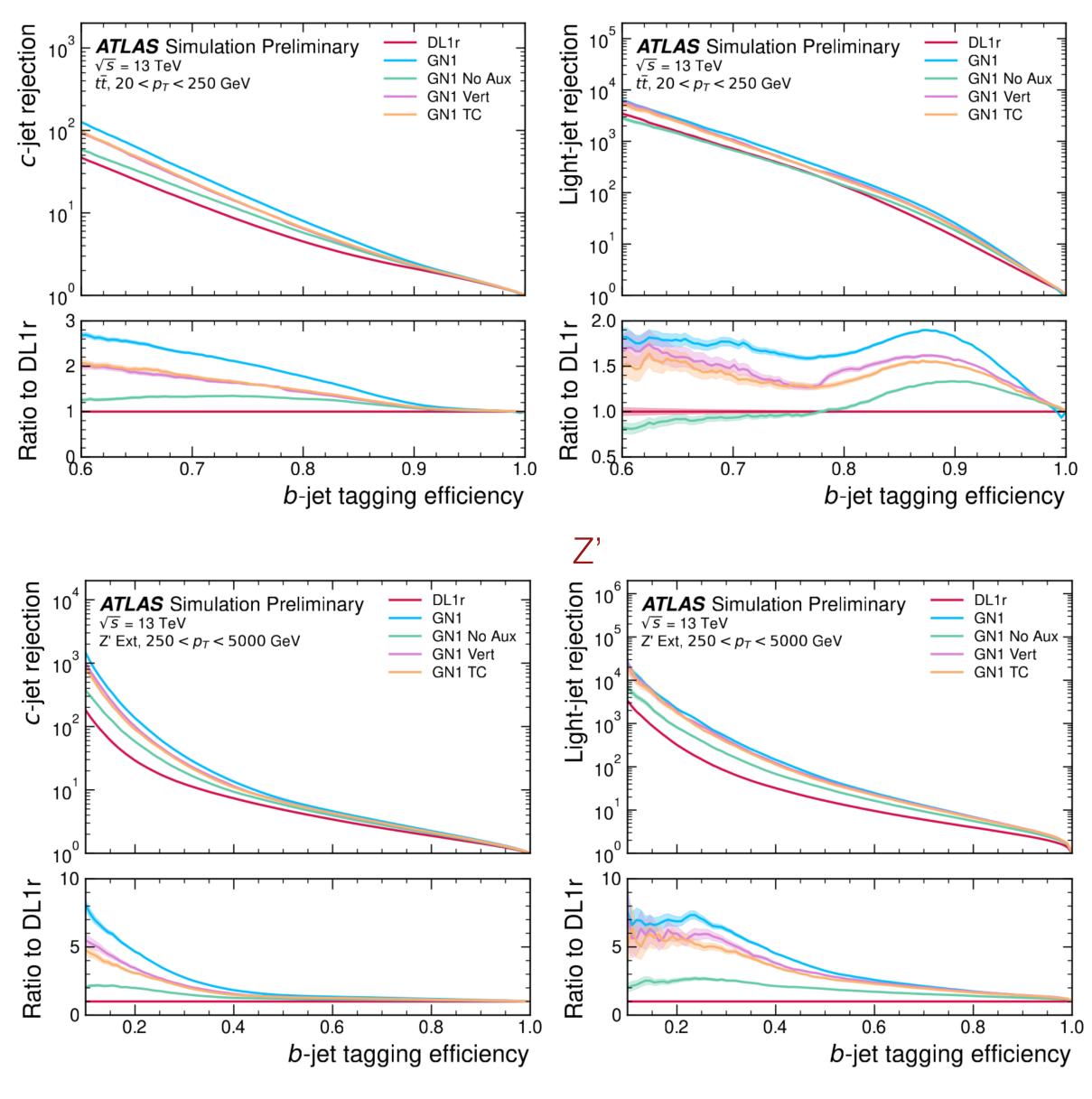


#### Ablations

- How important are the auxiliary tasks?  $\bullet$
- Significant degradation in performance when removing the auxiliary tasks (GN1 No Aux)
- Track classification (GN1 TC) and  $\bullet$ vertexing (GN1 Vert) bring similar level of improvement
- Both auxiliary objectives combined show  $\bullet$ the best performance, demonstrating they are complementary



ttbar



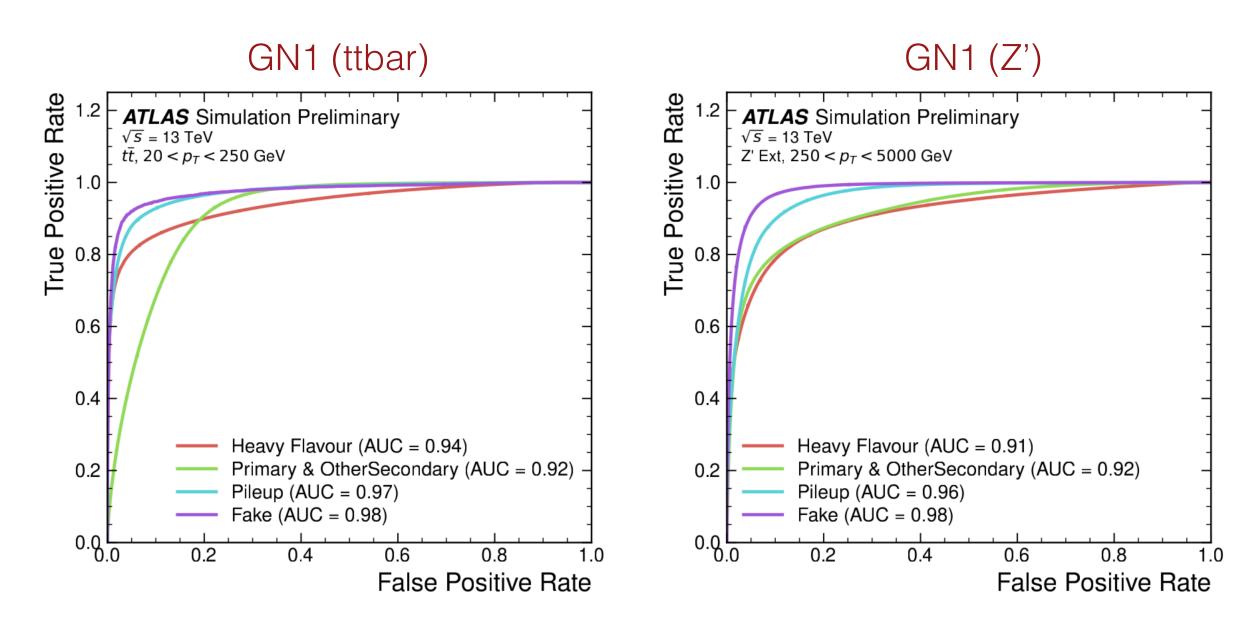
#### **Performance of the Auxiliary tasks**

- Vertexing -
  - Initial studies show that GN1 can find ~80% of the displaced vertices from b-hadron decays
- Track classification -
  - Compare to baseline Multi layer Perceptron (MLP) that processes one track at a time
  - GN1 outperforms the MLP on both ttbar and Z'  $\bullet$ 
    - Explanations -
    - Mixing of information among tracks helps
    - Jet classification and vertexing can be considered as aux tasks, improving tracks classification

Weizmann Institute of Science, UCL







AUC

|    |     | AUC         |             |  |
|----|-----|-------------|-------------|--|
|    |     | Mean        | Weighted    |  |
| tī | MLP | 0.87        | 0.89        |  |
|    | GN1 | <b>0.92</b> | <b>0.95</b> |  |
| Z' | MLP | 0.90        | 0.94        |  |
|    | GN1 | <b>0.94</b> | <b>0.96</b> |  |

## **Flexibility of GN1**

- On top of the improved performance, GN1 is also quite flexible  $\bullet$
- $\bullet$ the detector and the charged particle reconstruction are updated
- Adding new physics signatures that can help in flavor tagging is also straightforward  $\bullet$ 
  - In principle, it can just be another auxiliary task! ullet
- Can easily accommodate new sets of variables (lepton vars etc)  $\bullet$



Reduced components makes it easier to optimize the tagger for new region of phase space, or when

#### **Summary**

- New Graph Neural Network based jet flavor tagging tool developed at ATLAS  $\bullet$
- An "all-in-one" tagger! ullet
- Shows improved performance with respect to DL1r on simulation  $\bullet$
- The key improvement comes from the auxiliary training objectives - $\bullet$ 
  - Vertexing •
  - Track origin classification  $\bullet$
- Quite flexible and can easily be adapted to other specific used cases  $\bullet$
- PUB Note (ATL-PHYS-PUB-2022-027) released very soon  $\bullet$
- Fully implemented in ATLAS software  $\bullet$
- Calibration studies on data will follow soon  $\bullet$

Weizmann Institute of Science, UCL



#### **Summary**

- New Graph Neural Network based jet flavor tagging tool developed at ATLAS  $\bullet$
- An "all-in-one" tagger! lacksquare
- Shows improved performance with respect to DL1r on simulation ullet
- The key improvement comes from the auxiliary training objectives lacksquare
  - Vertexing •
  - Track origin classification  $\bullet$
- Quite flexible and can easily be adapted to other specific used cases lacksquare
- PUB Note (ATL-PHYS-PUB-2022-027) released very soon  $\bullet$
- Fully implemented in ATLAS software  $\bullet$
- Calibration studies on data will follow soon  $\bullet$

Weizmann Institute of Science, UCL



#### Thank you for listening...

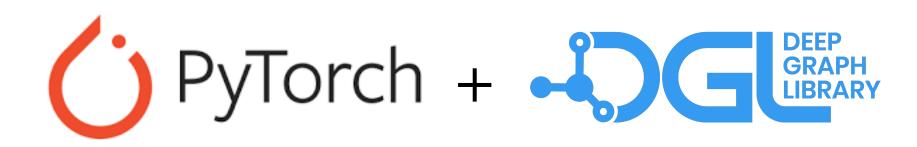
Weizmann Institute of Science

#### Backup

N. Kakati

#### **Implementation in ATLAS**

Training



Athena (The ATLAS software) has support for ONNXRuntime, which can run ONNX models

Weizmann Institute of Science, UCL



In ATLAS Software

