
Carlos Erice on behalf of

the CMS Collaboration

GPU-based algorithms for the CMS
track clustering and primary vertex

reconstruction

Connecting The Dots 2022,

June 2nd 2022, Princeton

Several changes incoming from the Run 3 and
Phase II of the LHC for both online (trigger) and
offline reconstruction:

→ Significant instantaneous luminosity
increase: more data taken per second. Need a
triggering system with a fast an efficient
response to guarantee physics coverage (see
Adriano’s talk). The complexity of some
reconstruction algorithms will also increase.

→ But also integrated luminosity: more data
taken overall. Reconstruction algorithms used
to obtain a faithful offline physics
reconstruction will need to run over
significantly more data.

CMS - from Run 2 to beyond

2

Computational challenges
→ With the current computing capabilities CMS would
quickly run out of computational power to address the
needs of the Phase II of the LHC: new R&D is needed to
reduce our CPU needs.

→ Roughly ¾ of the pie already taken by
reconstruction-related tasks.

→ The successful offloading of CMS HLT tracking/vertexing
tasks to GPU-based architectures shows an open path for
offline reconstruction to follow.

3

Estimations for:
 (Run 4) 270 fb-1/year at <PU>= 140
 (Run 5) 350 fb-1/year at <PU>= 200

Vertexing at CMS - A global picture
→ Roughly 10% of the overall time of the reconstruction
time, CMS primary vertex (PV) reconstruction proceeds
in roughly 3 steps:

→ Track selection: preparation of inputs.

→ Clustering: grouping of nearby tracks into sets of
vertex candidates.

→ Fitting: obtain properties of the vertex
themselves.

4

→ Towards higher <PU> values, the most
HL-LHC like regions, clustering tracks
takes most of the running time.

<PU> = 200

The clustering problem - The input

5

z

→ For PV reconstruction, all reconstructed tracks in the detector are filtered based on a small set of
quality criteria: based on the amount of pixel/tracker hits, consistency in the transverse plane, etc.

→ Then they are reduced to their positions -zi- at the point of closest approach to the beam and the
uncertainty of these positions -σ(zi)-.

The clustering process - Hard clustering

6

z
PV candidate at zk

zk

→ “Hard clustering”: assign univocally each track to a given vertex candidate (cluster). It requires finding
several quantities: number of vertex “K”, their positions “zk”, and the track-vertex assignment Pik = 0 or 1

→ Can roughly be presented as a direct
optimization problem given the set of input
tracks and their properties. Plenty of available
solutions for a direct optimization problem.

Issues:
→ The non-fixed nature of “K”, means that the number of vertex candidates needs to be extracted from data.

→ Any clustering needs to avoid local minima, stable solutions far from optimal settings (i.e. one cluster candidate
per input track would be optimal but very much unphysical).

Deterministic annealing - I
→ A known robust solution is deterministic annealing (i.e. doi.org/10.1016/0031-3203(91)90097-O):

→ Hard assignment becomes a fuzzy one, Pik != 0 or 1

→ An additional term is added to the minimization, acting as an entropy regulated by a
temperature T:

7

z
High T

Low T

→ At high T assignment becomes fuzzier => overall broader clusters, at low T it is the opposite.

https://doi.org/10.1016/0031-3203(91)90097-O

Deterministic annealing - II
→ The core of the algorithm relies on a start at very high T, for which a single vertex with all tracks is an analytical solution

8

z

z

z

T decreases

→ Slowly decreasing T, a critical temperature is reached where it is better to split the vertex in two:

→ The assignment probabilities and vertex positions can be solved by minimizing “E-TS” at fixed T:

K=1

K=2

Applied iteratively with
small steps in T

Deterministic annealing - III

9

z

z

z

→ The algorithm continues alternating between splitting vertices and decreasing T until a minimal temperature
(~minimum cluster size) is reached to define the final set of track clusters or “vertices”.

→ Main advantages: convergence to the globally optimal solution, clear definition of the number of final clusters
through the overall algorithm.

→ Main disadvantages: complexity of the algorithm, need to do ~#tracks x #vertices operations per T loop which might
introduces a significant number of computations.

T decreases

GPU implementation - Advantages and challenges
The algorithm complexity increases significantly as <PU>
increases:

→ “Run II”: ~20 vertex, ~ 500 tracks => 104
 Pik parameters

→ “Phase II”: ~200 vertex, ~5000 tracks => 106 Pik
parameters.

As the operations to update Pik/zk are done iteratively, each step
in T is, a priori, a great candidate for improvement through the
usage of GPU architectures. Several challenges appear, though:

→ Need to keep track of ~106 parameters across T
iterations.

→ Organize the code for efficiently parallelize operations
without the appearance of running conditions -i.e. need to
synchronize all threads after each T iteration-.

10

2016 Data Event Display (30 vertices)

GPU implementation - storage challenges
→ Main challenge is the non-trivial
organization+storage of data:

→ Pik stored as a SoA matrix
included into the track objects.

→ zk a simple array of positions.

→Operations can then be
summarized as per-matrix entry
operations and sums “across rows”.

11

Tracks:
t1: z1, dz1, …, (P11, ..., P1K,0,...,0)
t2: z2, dz2, …, (P21, ..., P2K,0,...,0)

.

.

.
tN: z1, dz1, …, (PN1, ..., PNK,0,...,0)

Vertices:
v1: z1
v2: z2

.
vK: zK
vK+1: 0

.
v512: 0

→ Rather unfortunately, as the overall number of vertices is a priori unknown, an oversized space in the
GPU memory is reserved -and zero padded- before the algorithm is run. Amount of allocated memory set
to catch possible high PU (up to 300 vertex) events in Phase II conditions.

→ Bulk of operations ~106 exponentials
readily parallelizable across all entries:

→ Vertex positions are parallelized
across all vertices as well:

GPU implementation - multithreading challenges

12

Tracks:
t1: z1, dz1, …, (P11, ..., P1K,0,...,0)
t2: z2, dz2, …, (P21, ..., P2K,0,...,0)

.

.

.
tN: z1, dz1, …, (PN1, ..., PNK,0,...,0)

Vertices:
v1: z1
v2: z2

.
vK: zK
vK+1: 0

.
v512: 0

(A
ct

ua
l f

or
m

ul
as

 s
lig

ht
ly

m

or
e

co
m

pl
ex

)

Step in
T loop

Ultimately limited by two factors:

- Amount of threads that can be run
in parallel.

- Need to synchronize operations in
each step on T (i.e., wait for slowest
thread to finish computations).

GPU implementation - performance and plans
→ A first implementation has been done to run on CUDA-based GPU systems.

→ Full synchronization between CPU and GPU implementations of the deterministic
annealing algorithm. Thus, the performance of the current CMS algorithm would be
ensured in the CPU version.

→ Preliminary timing comparisons show comparable timings (~1s/event) between
first CPU tests (IBRS Broadwell with a 2.2 GHz clock) and GPU ones (Tesla T4 with a
1.6GHz GPU clock).

→ Still some possibilities to explore for the future:

→ Reduce the amount of T steps/overall computations by pre-splitting tracks in small
regions of space => Reduce the problem to several Run II-like iterations of the clustering
that can be run in parallel!

13

Clustering by blocks?

→ Discussed a first implementation of offline Primary Vertexing for the CMS experiment
in GPU-based architectures.

→ One of the steps needed to reduce the overall computational needs of the
experiment.

→ A first implementation shows promising results in comparison with a CPU one,
fully reproducing the current performance of CMS’ primary vertex algorithms and
showing similar results in terms of timing.

→ As more items of the reconstruction chain are offloaded to GPUs, significant
improvements can be achieved in the overall CMS computing budget.

Summary

14

Backup

15

