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Several changes incoming from the Run 3 and 
Phase II of the LHC for both online (trigger) and 
offline reconstruction:

→ Significant instantaneous luminosity 
increase: more data taken per second. Need a 
triggering system with a fast an efficient 
response to guarantee physics coverage (see 
Adriano’s talk). The complexity of some 
reconstruction algorithms will also increase.

→  But also integrated luminosity: more data 
taken overall. Reconstruction algorithms used 
to obtain a faithful offline physics 
reconstruction will need to run over 
significantly more data.

CMS - from Run 2 to beyond
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Computational challenges
→ With the current computing capabilities CMS would 
quickly run out of computational power to address the 
needs of the Phase II of the LHC: new R&D is needed to 
reduce our CPU needs.

→ Roughly ¾ of the pie already taken by 
reconstruction-related tasks. 

→ The successful offloading of CMS HLT tracking/vertexing 
tasks to GPU-based architectures shows an open path for 
offline reconstruction to follow.
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Estimations for:
   (Run 4) 270 fb-1/year at <PU>= 140
   (Run 5) 350 fb-1/year at <PU>= 200



Vertexing at CMS - A global picture
→ Roughly 10% of the overall time of the reconstruction 
time, CMS primary vertex (PV) reconstruction proceeds 
in roughly 3 steps:

→  Track selection: preparation of inputs.

→ Clustering: grouping of nearby tracks into sets of 
vertex candidates.

→ Fitting: obtain properties of the vertex 
themselves.
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→ Towards higher <PU> values, the most 
HL-LHC like regions, clustering tracks 
takes most of the running time.

<PU> = 200



The clustering problem - The input
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→ For PV reconstruction, all reconstructed tracks in the detector are filtered based on a small set of 
quality criteria: based on the amount of pixel/tracker hits, consistency in the transverse plane, etc.

→  Then they are reduced to their positions -zi- at the point of closest approach to the beam and the 
uncertainty of these positions -σ(zi)-.



The clustering process - Hard clustering
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z
PV candidate at zk

zk

→ “Hard clustering”: assign univocally each track to a given vertex candidate (cluster). It requires finding 
several quantities: number of vertex “K”, their positions “zk”, and the track-vertex assignment Pik = 0 or 1

→ Can roughly be presented as a direct 
optimization problem given the set of input 
tracks and their properties. Plenty of available 
solutions for a direct optimization problem.

Issues: 
→ The non-fixed nature of “K”, means that the number of vertex candidates needs to be extracted from data.

→ Any clustering needs to avoid local minima, stable solutions far from optimal settings (i.e. one cluster candidate 
per input track would be optimal but very much unphysical).



Deterministic annealing - I 
→ A known robust solution is deterministic annealing (i.e. doi.org/10.1016/0031-3203(91)90097-O):

→ Hard assignment becomes a fuzzy one, Pik != 0 or 1

→ An additional term is added to the minimization, acting as an entropy regulated by a 
temperature T:
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z
High T

Low T

→ At high T assignment becomes fuzzier => overall broader clusters, at low T it is the opposite.

https://doi.org/10.1016/0031-3203(91)90097-O


Deterministic annealing - II 
→ The core of the algorithm relies on a start at very high T, for which a single vertex with all tracks is an analytical solution
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T decreases

→ Slowly decreasing T, a critical temperature is reached where it is better to split the vertex in two:

→ The assignment probabilities and vertex positions can be solved by minimizing “E-TS” at fixed T:

K=1

K=2

Applied iteratively with 
small steps in T



Deterministic annealing - III 
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→ The algorithm continues alternating between splitting vertices and decreasing T until a minimal temperature 
(~minimum cluster size) is reached to define the final set of track clusters or “vertices”.

→ Main advantages: convergence to the globally optimal solution, clear definition of the number of final clusters 
through the overall algorithm.

→ Main disadvantages: complexity of the algorithm, need to do ~#tracks x #vertices operations per T loop which might 
introduces a significant number of computations.

T decreases



GPU implementation - Advantages and challenges
The algorithm complexity increases significantly as <PU> 
increases:

→ “Run II”: ~20 vertex, ~ 500 tracks =>  104
  Pik parameters 

→ “Phase II”: ~200 vertex, ~5000 tracks => 106 Pik 
parameters.

As the operations to update Pik/zk are done iteratively, each step 
in T is, a priori, a great candidate for improvement through the 
usage of GPU architectures. Several challenges appear, though:

→ Need to keep track of ~106 parameters across T 
iterations.

→ Organize the code for efficiently parallelize operations 
without the appearance of running conditions -i.e. need to 
synchronize all threads after each T iteration-.
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2016 Data Event Display (30 vertices)



GPU implementation - storage challenges
→ Main challenge is the non-trivial 
organization+storage of data:

→ Pik stored as a SoA matrix 
included into the track objects.

→ zk a simple array of positions.

→Operations can then be 
summarized as per-matrix entry 
operations and sums “across rows”.
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Tracks:
t1: z1, dz1, …, (P11, ..., P1K,0,...,0) 
t2: z2, dz2, …, (P21, ..., P2K,0,...,0) 

.

.

.
tN: z1, dz1, …, (PN1, ..., PNK,0,...,0) 

Vertices:
v1: z1
v2: z2

.
vK: zK
vK+1: 0

.
v512: 0

→ Rather unfortunately, as the overall number of vertices is a priori unknown, an oversized space in the 
GPU memory is reserved -and zero padded- before the algorithm is run. Amount of allocated memory set 
to catch possible high PU (up to 300 vertex) events in Phase II conditions.



→ Bulk of operations ~106 exponentials 
readily parallelizable across all entries:

→ Vertex positions are parallelized 
across all vertices as well:

GPU implementation -  multithreading challenges
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Tracks:
t1: z1, dz1, …, (P11, ..., P1K,0,...,0) 
t2: z2, dz2, …, (P21, ..., P2K,0,...,0) 

.

.

.
tN: z1, dz1, …, (PN1, ..., PNK,0,...,0) 

Vertices:
v1: z1
v2: z2

.
vK: zK
vK+1: 0

.
v512: 0
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Step in 
T loop

Ultimately limited by two factors:

- Amount of threads that can be run 
in parallel.

- Need to synchronize operations in 
each step on T (i.e., wait for slowest 
thread to finish computations).



GPU implementation - performance and plans
→ A first implementation has been done to run on CUDA-based GPU systems.

→ Full synchronization between CPU and GPU implementations of the deterministic 
annealing algorithm. Thus, the performance of the current CMS algorithm would be 
ensured in the CPU version.

→ Preliminary timing comparisons show comparable timings (~1s/event) between 
first CPU tests (IBRS Broadwell with a 2.2 GHz clock) and GPU ones (Tesla T4 with a 
1.6GHz GPU clock).

→ Still some possibilities to explore for the future:

→ Reduce the amount of T steps/overall computations by pre-splitting tracks in small 
regions of space => Reduce the problem to several Run II-like iterations of the clustering 
that can be run in parallel! 
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Clustering by blocks?



→ Discussed a first implementation of offline Primary Vertexing for the CMS experiment 
in GPU-based architectures.

→ One of the steps needed to reduce the overall computational needs of the 
experiment.

→ A first implementation shows promising results in comparison with a CPU one, 
fully reproducing the current performance of CMS’ primary vertex algorithms and 
showing similar results in terms of timing.

→ As more items of the reconstruction chain are offloaded to GPUs, significant 
improvements can be achieved in the overall CMS computing budget.

Summary
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Backup

15


