BOSTON UNIVERSITY

GPU-based algorithms for the CMS track clustering and primary vertex — reconstruction —

Connecting The Dots 2022,

June 2nd 2022, Princeton

Carlos Erice on behalf of the CMS Collaboration

CMS - from Run 2 to beyond

Several changes incoming from the Run 3 and Phase II of the LHC for both online (trigger) and offline reconstruction:

 \rightarrow Significant instantaneous luminosity increase: more data taken per second. Need a triggering system with a fast an efficient response to guarantee physics coverage (see Adriano's talk). The complexity of some reconstruction algorithms will also increase.

 \rightarrow But also integrated luminosity: more data taken overall. Reconstruction algorithms used to obtain a faithful offline physics reconstruction will need to run over significantly more data.

Computational challenges

 \rightarrow With the current computing capabilities CMS would quickly run out of computational power to address the needs of the Phase II of the LHC: new R&D is needed to reduce our CPU needs.

 \rightarrow Roughly ³/₄ of the pie already taken by reconstruction-related tasks.

 \rightarrow The successful offloading of CMS HLT tracking/vertexing tasks to GPU-based architectures shows an open path for offline reconstruction to follow.

Vertexing at CMS - A global picture

 \rightarrow Roughly 10% of the overall time of the reconstruction time, CMS primary vertex (PV) reconstruction proceeds in roughly 3 steps:

→ Track selection: preparation of inputs.

 \rightarrow Clustering: grouping of nearby tracks into sets of vertex candidates.

 \rightarrow Fitting: obtain properties of the vertex themselves.

 \rightarrow Towards higher <PU> values, the most HL-LHC like regions, clustering tracks takes most of the running time.

 \rightarrow For PV reconstruction, all reconstructed tracks in the detector are filtered based on a small set of quality criteria: based on the amount of pixel/tracker hits, consistency in the transverse plane, etc.

 \rightarrow Then they are reduced to **their positions** - z_i - at the point of closest approach to the beam and the **uncertainty of these positions** - $\sigma(z_i)$ -.

The clustering process - Hard clustering

 \rightarrow "Hard clustering": assign univocally each track to a given vertex candidate (cluster). It requires finding several quantities: number of vertex "K", their positions " z_k ", and the track-vertex assignment $P_{ik} = 0$ or 1

Issues:

 \rightarrow The non-fixed nature of "K", means that the number of vertex candidates needs to be extracted from data.

 \rightarrow Any clustering needs to avoid local minima, stable solutions far from optimal settings (i.e. one cluster candidate per input track would be optimal but very much unphysical).

Deterministic annealing - I

 \rightarrow A known robust solution is deterministic annealing (i.e. <u>doi.org/10.1016/0031-3203(91)90097-O</u>):

 \rightarrow Hard assignment becomes a fuzzy one, $P_{ik} = 0$ or 1

 \rightarrow An additional term is added to the minimization, acting as an entropy regulated by a temperature T:

$$E - TS = \sum_{i=1}^{I} \sum_{k=1}^{K} P_{ik} \frac{(z_i - z_k)^2}{\sigma_i^2} + T \sum_{i=1}^{I} \sum_{k=1}^{K} P_{ik} \log(P_{ik})$$

$$\xrightarrow{\text{High T}}$$

$$\xrightarrow{\text{High T}}$$

$$\xrightarrow{\text{Low T}}$$

 \rightarrow At high T assignment becomes fuzzier => overall broader clusters, at low T it is the opposite.

Deterministic annealing - II

 \rightarrow The core of the algorithm relies on a start at very high T, for which a single vertex with all tracks is an analytical solution

_

decreases

Deterministic annealing - III

 \rightarrow The algorithm continues alternating between splitting vertices and decreasing T until a minimal temperature (~minimum cluster size) is reached to define the final set of track clusters or "vertices".

 \rightarrow Main advantages: convergence to the globally optimal solution, clear definition of the number of final clusters through the overall algorithm.

 \rightarrow Main disadvantages: complexity of the algorithm, need to do ~#tracks x #vertices operations per T loop which might introduces a significant number of computations.

GPU implementation - Advantages and challenges

The algorithm complexity increases significantly as <PU> increases:

 \rightarrow "Run II": ~20 vertex, ~ 500 tracks => 10⁴ P_{ik} parameters

 \rightarrow "Phase II": ~200 vertex, ~5000 tracks => 10⁶ P_{ik} parameters.

As the operations to update P_{ik}/z_k are done iteratively, each step in T is, a priori, a great candidate for improvement through the usage of GPU architectures. Several challenges appear, though:

 \rightarrow Need to keep track of ~10^6 parameters across T iterations.

 \rightarrow Organize the code for efficiently parallelize operations without the appearance of running conditions -i.e. need to synchronize all threads after each T iteration-.

GPU implementation - storage challenges

 \rightarrow Main challenge is the non-trivial organization+storage of data:

 \rightarrow P_{ik} stored as a SoA matrix included into the track objects.

 $\rightarrow z_k$ a simple array of positions.

 \rightarrow Operations can then be summarized as per-matrix entry operations and sums "across rows".

 \rightarrow Rather unfortunately, as the overall number of vertices is a priori unknown, an oversized space in the GPU memory is reserved -and zero padded- before the algorithm is run. Amount of allocated memory set to catch possible high PU (up to 300 vertex) events in Phase II conditions.

GPU implementation - multithreading challenges

 \rightarrow Bulk of operations ~10⁶ exponentials readily parallelizable across all entries:

(Actual formulas slightly more complex)

Step in T loop \rightarrow Vertex positions are parallelized across all vertices as well:

 $\mathcal{P} = rac{\mathbf{e} \quad \sqrt{-i} \quad f}{\sum_{l=1}^{K} e^{-\beta\left(rac{z_i - z_l^{(n-1)}}{\sigma_i^2}\right)}}$

$$\hat{z}_{k}^{(n)} = rac{\sum_{i=1}^{I} P_{ik}^{(n-1)} z_{i}}{\sum_{i=1}^{I} P_{ik}^{(n-1)}}$$

Ultimately limited by two factors:

- Amount of threads that can be run in parallel.

- Need to synchronize operations in each step on **T** (i.e., wait for slowest thread to finish computations).

GPU implementation - performance and plans

 \rightarrow A first implementation has been done to run on CUDA-based GPU systems.

 \rightarrow Full synchronization between CPU and GPU implementations of the deterministic annealing algorithm. Thus, the performance of the current CMS algorithm would be ensured in the CPU version.

 \rightarrow Preliminary timing comparisons show comparable timings (~1s/event) between first CPU tests (IBRS Broadwell with a 2.2 GHz clock) and GPU ones (Tesla T4 with a 1.6GHz GPU clock).

 \rightarrow Still some possibilities to explore for the future:

 \rightarrow Reduce the amount of T steps/overall computations by pre-splitting tracks in small regions of space => Reduce the problem to several Run II-like iterations of the clustering that can be run in parallel!

 \rightarrow Discussed a first implementation of offline Primary Vertexing for the CMS experiment in GPU-based architectures.

 \rightarrow One of the steps needed to reduce the overall computational needs of the experiment.

 \rightarrow A first implementation shows promising results in comparison with a CPU one, fully reproducing the current performance of CMS' primary vertex algorithms and showing similar results in terms of timing.

 \rightarrow As more items of the reconstruction chain are offloaded to GPUs, significant improvements can be achieved in the overall CMS computing budget.

