Poster Introduction

Software Performance of the ATLAS Track Reconstruction for LHC Run 3

Makayla Vessella

On behalf of the ATLAS collaboration

Software Performance of the ATLAS Track Reconstruction for LHC Run 3

Makayla Vessella, University of Massachusetts Amherst
On behalf of the ATLAS collaboration
Connecting the Dots 2022, Princeton University, May 31 - June 2

Introduction

- Reconstructing tracks in the ATLAS Inner
 Detector is the most resource-intensive
 portion of the ATLAS reconstruction chain
 during the LHC Run 2 and expected to scale
 exponentially with an increasing number of
 simultaneous p-p collisions (pile-up,μ)
- Large scale effort undertaken in ATLAS during the Long Shutdown 2 to speed up tracking while preserving physics performance, now scales near-linearly with increasing pile-up.

General Improvements and Optimizations

Stricter cuts for track candidates:

- . Require at least 8 silicon clusters (from 7 in Run 2)
- Permitted |d_o| range restricted to <5 mm (from <10 mm in Run 2)

Backtracking seeding optimization:

- Only perform backtracking within ROI seeded by deposits in EM calorimeter with E₋ > 6 GeV
- Execution speed for backtracking improved by factor of 20 with minimal efficiency loss

Primary seeding optimization:

- Removed seeds unlikely to result in high-quality tracks with:
- Stricter requirements on impact parameters
- Narrower search roads
- · Restrictions on number of overlapping seeds
- o Confirmation space points
- Reduced angular region size for seed formation

Additional Optimizations:

- Abort iterative track fit procedure in TRT extension early for candidates with an incompatible number of hits
- General software improvements such as exploiting vectorized instructions for Runge-Kutta propagator implementation

Adaptive Multi Vertex Fitter (AVMF) and ACTS Integration

- Adaptive multi vertex fitter (AVMF) algorithm commissioned for Run 3 to replace an iterative procedure
 - Each track assigned a weight to multiple vertices, pile-up dependency reduced
 - By default is slower compared to iterative, solved through deploying highly optimized ACTS implementation of vertexing routine

Physics Performance

- Excellent physics performance maintained with Run 3 reconstruction
 - Maximum efficiency loss of only 4% at lowest p_ values
 - Up to 2-4x
 improvement in execution speed
- Near-linear behavior of Run 3 reconstruction shows dramatic improvement in track purity

ATL-PHYS-PUB-2021-012

1: A Common Tracking Software, arxiv.org/abs/2106.13593

