
GNNs for Particle-Tracking on FPGAs
Connecting the Dots, May 31, 2022

Abdelrahman Elabd, Vesal Razavimaleki, Shi-Yu Huang, Javier Duarte,
Markus Atkinson, Gage DeZoort, Peter Elmer, Scott Hauck, Jin-Xuan Hu,

Shih-Chieh Hsu, Bo-Cheng Lai, Mark Neubauer, Isobel Ojalvo,
Savannah Thais, Matthew Trahms

1Front. Big Data 5:828666 (2022)

https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full

Outline
1. The overarching problem

a. The machine-learning problem: How do we perform particle-tracking at the Large Hadron
Collider (LHC)?

b. The hardware problem: What are the hardware limitations (for particle-tracking) set by the
High-Luminosity LHC (HL-LHC)?

2. The machine-learning problem
a. What are graphs and graph neural networks (GNNs)?
b. How can GNNs be used for particle-tracking at the LHC?

3. The hardware problem
a. What are FPGAs, and why do we need them at the LHC?
b. What is High-Level Synthesis (HLS), and why do we need it in order to use FPGAs?
c. How do we use FPGAs and HLS to meet the hardware limitations set by the HL-LHC?

2

The overarching problem
Example: CMS

- L1 Trigger: 4 microsecond latency limit
- High-Level Trigger (HLT): 1 khz output

rate
- The High-Luminosity LHC will increase

the number of proton-proton collisions
in any collision event by about 5x-7x

- Current tracking algorithms scale
worse than quadratically with the
number of detector-hits

3

Graphs and Graph Neural Networks

Track-segment candidates

4

Classified track-segments Tracks

The machine-learning problem: Workflow

- Graph construction
- Edge classification ⇿ Track-segment construction
- Full-track construction

5

Dataset

6

TrackML Dataset: kaggle.com/c/trackml-particle-identification/data [arXiv:1904.06778]

- Simulated
- LHC-like detector
- High-Luminosity pileup

https://www.kaggle.com/c/trackml-particle-identification/data
https://arxiv.org/abs/1904.06778

Graph construction

7

● Geometric cut:
○ phi_slope_max: 0.0006;
○ z0_max: 15000 mm;

● pt cut: 2 GeV
● Segmentation

○ n_phi_sections: 8, n_eta_sections: 2
● n_nodes, n_edges @ 95th percentile: (113, 196)
● Graph construction efficiency: 98% and purity: 57%

Purity/efficiency
● 98% efficiency and 57% purity for 2 eta sectors, 8 phi sectors

8

Efficiency = (# of true segments after cut)/(# of true segments before cut)
Purity = (# of true segments after cut)/(# of total segments after cut)

95th percentile nodes/edges
● 113 nodes and 196 edges for 2 eta sectors, 8 phi sectors

9

Edge-classification model: Interaction Network
● Dezoort et al., 2021: arXiv:2103.16701

10

+ = Message Passing

https://arxiv.org/abs/2103.16701

The hardware problem: CPUs vs FPGAs

Python

11

FPGA

The hardware problem: Workflow

12

The big picture: GNNs for Particle-Tracking on FPGAS

13

Post Training Quantization vs. Quantization Aware Training

14

Padding and Truncation

15

Performance vs Precision
● AUC vs. total bit width X for ap_fixed<X,X/2>
● PTQ = Post Training Quantization
● QAT = Quantization Aware Training

16

● Two implementations:
○ Throughput-optimized

■ Lower latency/initiation-interval
■ Greater resource-usage
■ Smaller graphs

○ Resource-optimized
■ Greater latency/initiation-interval
■ Lower resource-usage
■ Larger graphs

17

FPGA HLS Implementations

Initiation interval

Latency

1st function call

2nd function call

…

Precision scan, throughput-optimized
● FPGA: Xilinx Virtex UltraScale+ VU9P
● L1 latency limit = 4 microseconds = 800 clock cycles
● ~30% of maximum resource usage, <10% of maximum latency

18

1 clock cycle = 5 ns

Precision scan, resource-optimized
● DSPs: used in matrix multiplication
● Latency = 450 clock cycles = 2.25 microseconds

19

Size scan, resource-optimized
● Precision fixed at 14 bits
● Bigger graphs: High-Level Trigger coprocessor

20

Summary and outlook
● Applications

○ Throughput-optimized
■ Small graphs (28 nodes with 56 edges, or smaller)
■ <1 microsecond latency

● Real-time L1 trigger
○ Resource-optimized

■ Larger graphs (1344 nodes with 2688 edges, or slightly larger)
■ 0.5-6 microseconds depending on graph-size

● Real-time L1 trigger for smaller graphs
● Offline L1 trigger
● High-level trigger
● CPU coprocessor application

● Future efforts
○ Throughput-optimized synthesizability for larger graphs
○ FPGA implementation: Graph construction, track construction

■ Serializing data flow between the different parts of the machine-learning workflow

21

22

Backup

23

Where’s the code?
● With just the throughput-optimized backend

○ https://github.com/abdelabd/hls4ml/tree/pyg_to_hls_rebase
○ Pull-request in the works: https://github.com/fastmachinelearning/hls4ml/pull/379

● With both the throughput-optimized and resource-optimized backends
○ https://github.com/abdelabd/hls4ml/tree/pyg_to_hls_rebase_w_dataflow

24

https://github.com/abdelabd/hls4ml/tree/pyg_to_hls_rebase
https://github.com/fastmachinelearning/hls4ml/pull/379
https://github.com/abdelabd/hls4ml/tree/pyg_to_hls_rebase_w_dataflow

● Array_partition: Splits large arrays into smaller arrays for concurrent memory access
● Unroll: Unrolls for-loops in space, so that each iteration can happen concurrently
● Pipeline: Utilizes idle resources to minimize II

25

HLS Preprocesser Directives

Initiation interval with no pipelining

Initiation interval with pipelining

1st function call

2nd function call

…

1st function call

2nd function call

Reuse factor scan, throughput-optimized
● 28 nodes, 56 edges, ap_fixed<14,7>, VU9P
● RF can reduce resource usage

26

Throughput-optimized implementation

- Overall design is pipelined between each block
- Fully partitioned arrays
- Fully unrolled loops

27

Resource-optimized implementation

- Overall design is pipelined
between each block

- Functions and loops within each
block are also pipelined (1)

- Duplicate arrays for parallel,
concurrent access (2)

- Loop-unrolling matches
parallelization (3)

- Array-partitioning matches
parallelization (4)

28

(1)

(1)
(3)

(3)

(4)

(2)

● Precision scan: reuse-factor = 8, over a range of fixed-point precision with
total bits from 6 to 18

● Reuse factor scan: ap_fixed<14,7>, over a range of reuse factors from 1 to 40
● Graph-size scan: ap_fixed<14,7> and reuse-factor=8, over a range of

graph-sizes from 7 nodes with 14 edges to 1388 nodes with 2776 edges.
● Resource-usage numbers are retrieved from Vivado (logic) synthesis, and

latency numbers are retrieved from Vivado HLS (C) synthesis
● Two designs: throughput-optimized and resource-optimized
● Maximum graph sizes:

○ 28 nodes, 56 edges for throughput-optimized
○ 1,344 nodes, 2,688 edges for resource-optimized

29

Resource and latency scans

