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Outline
1. The overarching problem

a. The machine-learning problem: How do we perform particle-tracking at the Large Hadron 
Collider (LHC)?

b. The hardware problem: What are the hardware limitations (for particle-tracking) set by the 
High-Luminosity LHC (HL-LHC)?

2. The machine-learning problem
a. What are graphs and graph neural networks (GNNs)?
b. How can GNNs be used for particle-tracking at the LHC?

3. The hardware problem
a. What are FPGAs, and why do we need them at the LHC?
b. What is High-Level Synthesis (HLS), and why do we need it in order to use FPGAs?
c. How do we use FPGAs and HLS to meet the hardware limitations set by the HL-LHC?
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The overarching problem 
Example: CMS 

- L1 Trigger: 4 microsecond latency limit
- High-Level Trigger (HLT): 1 khz output 

rate
- The High-Luminosity LHC will increase 

the number of proton-proton collisions 
in any collision event by about 5x-7x

- Current tracking algorithms scale 
worse than quadratically with the 
number of detector-hits
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Graphs and Graph Neural Networks

Track-segment candidates
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Classified track-segments Tracks



The machine-learning problem: Workflow

- Graph construction
- Edge classification ⇿ Track-segment construction
- Full-track construction 
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Dataset
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TrackML Dataset: kaggle.com/c/trackml-particle-identification/data [arXiv:1904.06778]

- Simulated
- LHC-like detector
- High-Luminosity pileup

https://www.kaggle.com/c/trackml-particle-identification/data
https://arxiv.org/abs/1904.06778


Graph construction
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● Geometric cut:
○ phi_slope_max: 0.0006; 
○ z0_max: 15000 mm;

● pt cut: 2 GeV
● Segmentation

○ n_phi_sections: 8, n_eta_sections: 2
● n_nodes, n_edges @ 95th percentile: (113, 196)
● Graph construction efficiency: 98% and purity: 57%



Purity/efficiency
● 98% efficiency and 57% purity for 2 eta sectors, 8 phi sectors
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Efficiency = (# of true segments after cut)/(# of true segments before cut)
Purity = (# of true segments after cut)/(# of total segments after cut)



95th percentile nodes/edges
● 113 nodes and 196 edges for 2 eta sectors, 8 phi sectors
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Edge-classification model: Interaction Network
● Dezoort et al., 2021: arXiv:2103.16701
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+ = Message Passing

https://arxiv.org/abs/2103.16701


The hardware problem: CPUs vs FPGAs

Python
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FPGA



The hardware problem: Workflow
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The big picture: GNNs for Particle-Tracking on FPGAS
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Post Training Quantization vs. Quantization Aware Training
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Padding                        and                    Truncation

15



Performance vs Precision
● AUC vs. total bit width X for ap_fixed<X,X/2>
● PTQ = Post Training Quantization 
● QAT = Quantization Aware Training
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● Two implementations:
○ Throughput-optimized 

■ Lower latency/initiation-interval 
■ Greater resource-usage
■ Smaller graphs

○ Resource-optimized
■ Greater latency/initiation-interval
■ Lower resource-usage
■ Larger graphs
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FPGA HLS Implementations

Initiation interval

Latency

1st function call

2nd function call

…



Precision scan, throughput-optimized
● FPGA: Xilinx Virtex UltraScale+ VU9P
● L1 latency limit = 4 microseconds = 800 clock cycles 
● ~30% of maximum resource usage, <10% of maximum latency
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1 clock cycle = 5 ns



Precision scan, resource-optimized
● DSPs: used in matrix multiplication
● Latency = 450 clock cycles = 2.25 microseconds
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Size scan, resource-optimized
● Precision fixed at 14 bits
● Bigger graphs: High-Level Trigger coprocessor
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Summary and outlook
● Applications

○ Throughput-optimized
■ Small graphs (28 nodes with 56 edges, or smaller)
■ <1 microsecond latency

● Real-time L1 trigger
○ Resource-optimized

■ Larger graphs (1344 nodes with 2688 edges, or slightly larger)
■ 0.5-6 microseconds depending on graph-size

● Real-time L1 trigger for smaller graphs
● Offline L1 trigger
● High-level trigger
● CPU coprocessor application

● Future efforts
○ Throughput-optimized synthesizability for larger graphs
○ FPGA implementation: Graph construction, track construction

■ Serializing data flow between the different parts of the machine-learning workflow
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Backup
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Where’s the code?
● With just the throughput-optimized backend

○ https://github.com/abdelabd/hls4ml/tree/pyg_to_hls_rebase
○ Pull-request in the works: https://github.com/fastmachinelearning/hls4ml/pull/379

● With both the throughput-optimized and resource-optimized backends
○ https://github.com/abdelabd/hls4ml/tree/pyg_to_hls_rebase_w_dataflow
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https://github.com/abdelabd/hls4ml/tree/pyg_to_hls_rebase
https://github.com/fastmachinelearning/hls4ml/pull/379
https://github.com/abdelabd/hls4ml/tree/pyg_to_hls_rebase_w_dataflow


● Array_partition: Splits large arrays into smaller arrays for concurrent memory access
● Unroll: Unrolls for-loops in space, so that each iteration can happen concurrently
● Pipeline: Utilizes idle resources to minimize II
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HLS Preprocesser Directives

Initiation interval with no pipelining

Initiation interval with pipelining

1st function call

2nd function call

…

1st function call

2nd function call



Reuse factor scan, throughput-optimized
● 28 nodes, 56 edges, ap_fixed<14,7>, VU9P
● RF can reduce resource usage
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Throughput-optimized implementation

- Overall design is pipelined between each block
- Fully partitioned arrays
- Fully unrolled loops
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Resource-optimized implementation

- Overall design is pipelined 
between each block

- Functions and loops within each 
block are also pipelined (1)

- Duplicate arrays for parallel, 
concurrent access (2)

- Loop-unrolling matches 
parallelization (3)

- Array-partitioning matches 
parallelization (4)

28

(1)

(1)
(3)

(3)

(4)

(2)



● Precision scan: reuse-factor = 8, over a range of fixed-point precision with 
total bits from 6 to 18

● Reuse factor scan: ap_fixed<14,7>, over a range of reuse factors from 1 to 40
● Graph-size scan: ap_fixed<14,7> and reuse-factor=8, over a range of 

graph-sizes from 7 nodes with 14 edges to 1388 nodes with 2776 edges.
● Resource-usage numbers are retrieved from Vivado (logic) synthesis, and 

latency numbers are retrieved from Vivado HLS (C) synthesis
● Two designs: throughput-optimized and resource-optimized
● Maximum graph sizes: 

○ 28 nodes, 56 edges for throughput-optimized
○ 1,344 nodes, 2,688 edges for resource-optimized
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Resource and latency scans


