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Introduction

Graph neural nets are showing great
promise for particle tracking

See e.g. summary talk here

Graph building remains a challenge

Seeded graph building and
reinforcement learning are explored
as options for accelerated graph
building


https://indico.cern.ch/event/1104699/attachments/2446264/4196018/GNN%20for%20HL-LHC.pdf

Graph building is challenging

Graph building is slow Allows only one hit per Filters out
layer per track background hits
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Motivation for reinforcement learning

- Use experience to build smaller and simultaneously less limited graphs
- Astraight line in r,z space should be easy to learn

- Can take advantage of physics information

50 1
- Easily parallelisable as each track is independent 4o/

- Freedom to correct incorrect behaviour 201 .
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Reinforcement learning theory

An agent learns actions by rewards

“Requires” that: RL Algorithms
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Successful applications
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Playing games

Walking robots
Controlling plasma
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https://docs.google.com/file/d/1UlBeu_r3rL4dHadOrV9JPPIF9fuzMOPN/preview
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphazero-shedding-new-light-on-chess-shogi-and-go/alphazero_preprint.pdf
https://arxiv.org/abs/1812.11103
https://meetings.aps.org/Meeting/DPP21/Session/GP11.37
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Performance requirement estimate

If RL model predicts reliably within 20 cm, ~25% of fake edges removed, ~50% if

within 10 cm for all pT cuts
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Reinforcement learning environment TrackML

Vanilla policy gradient

Continue until n hits found

Reward is -distance between Algorithm 1 Vanilla Policy Gradient Algorithm
H the correct hit and prediction 1: Input: initial policy parameters f, initial value function parameters ¢
- 2: for k=10,1.2,... do
- . . 3 Collect set of trajectories Dy, = {7;} by running policy 7 = #(f,) in the environment.
Y RL learns a correction to this £ Compute rewards-to-go R
5. Compute advantage estimates, A, (using any method of advantage estimation) based

! .
’ assumptlon on the current value function V,,, .

R 6:  Estimate policy gradient as
o
. g . ’
B Assume next position is 1 r :
iy = —— Vo log ma(ar]se)ly, Ar.
position + Ar, Az ” [Du,;i; ologmo(aulse)l, A

7 Compute policy update, either using standard gradient ascent,

Start with seed to find Ar, Az Bers = Br + ki,

or via another gradient ascent algorithm like Adam.

State described by position 8 Fit value lunction by regression on mean-squared error:
of hit PR P
Opey = engn}:n W -ZDA Zl:' (\,_';(S:) - R:) ,

typically via some gradient descent algorithm.
9: end for



https://spinningup.openai.com/en/latest/algorithms/vpg.html

Inductive bias

Use prior domain
knowledge to improve
accuracy:

- Prior assumption of
next hit position

- Reflectionin z
space

—-100

average return

—-400

—— Position

Change in position
—— Correction to dr,dz
----- Always dr, dz

'WVJJWWW\/\/JM

0 100000 200000 300000 400000 500000
step
No reflection Reflection
,//“//\J\“/\V/ e
\/ 20 -90 /W_M

o} 40k 80k

N A7
- : 2 110
10{ *° e* . °
* o 130
s - - /
e 150

-50 o 50 100 150 200
z (cm)

120k 160k 200k o 40k 80k 120k 160k 200k

8




First pass result
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Q-learning for discrete states

Initialized
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' Timestep: 1
State: 328
Action: 5
Reward: -10

-2.30108105  -1.97092096 -2.30357004 -2.20591839 -10.3607344  -8.5583017

9.96984239  4.02706992 12.96022777 29 332877873  3.38230603
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https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/

Seeded graph building

Prediction of intersection points

Create seed from two first hits sorted in r,z

Use seed to find line parameters
Predict intersection points with detector layers

Find hits close to intersection points

Create seed from two first hits sorted in

rz
Use seed to define line parameters
Find compatible modules given these 1

parameters



Seeded graph building
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https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/2103.16701

Using seeded graph building methods with RL

With RL




Unseeded reinforcement learning

Unseeded RL shows that action space is
very unrestricted
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Potential improvements

- Action masking - only sampling actions from allowed space

- Explore other RL methods and environments
- Include physics restrictions

- Combined learning of GNN and RF
(see e.g. this talk using it for proton traces)
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https://arxiv.org/abs/2006.14171
https://indico.cern.ch/event/1078970/contributions/4833309/attachments/2442332/4184212/IML2022_RL-Track-Recon.pdf

Conclusions

- Reinforcement learning can learn an approximation of the track hits
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