’A\lﬂ ExaTrkX as a Service

BERKELEY LAB

Yongbing Feng(1), Shie-Chieh Hsu(2), Xiangyang Ju(3), Alina Lazar(4)

& -f-..m"fi‘»-x U.S. DEPARTMENT OF

(1) Fermi National Accelerator Laboratory, (2) University of Washington, A3D3,

W . N
& OF SEIENEE (3) Lawrence Berkeley National Laboratory, (4) Youngstown State University

Track reconstruction (Client) ExaTrkX (Server)

Why Inference as-a-Service for
production? L

» Factorize out ML framework : Event Spacepoint | i
P s g . I - l
» Easy support for different ML GFE“TFSFO“' Digitization Formation " Spacepoints .
frameworks & models g rastsim |
| N i .
» Factorize out algorithm scheduling. : Tfa%kl'_:'“:““g . ExaTrkX Track NeaEls
I en ' - . | (9 l
ML models can be deployed . - 1€ | Finding Server !
. | Initial track — Track candidates 1 |
on different coprocessors ! Track | |
: : ammmm Parameter | |
simultaneously and easily @ Performance estimation | .
» Portable solution to supporting R I e ! |
different coprocessors ST m oo o oo oo o mmmmmmooo o |
 No need for client to rewrite . .y .
s Track finding takes majority of the tracking | | |
code for specific languages SRR - torchscript fe:) torchscript (i) B ;.. < (0,1)} = C“uGrap
| o reconstruction time. The ExaTrkX pipeline Embedding z ' g < N
* Event batch_l_ng 9 more efficient and provides a promising acceleration by using the . edges Edge fiter prunec SN classified components
sufficient utilization of coprocessors Graph Neural Network. The goal is to setup the . edges edges
Allow access to remote Al ExaTrkX pipeline as a Service
accelerators, like GPUs

Step name inthe Triton server » The timing measurements use 100 100001 1 s00: 0.0003 | 1550] |l 1 s00: 0.0014 50l | [s00: 0.0104
- - I l s01: 0.0012 s01: 0.0030 s01: 0.0129
pipeline hackend h_eavy neutral lepton events without 8000 — 0 00008 | 1000- o o00ms 501 JtL — 02 00106
Embedding Dytorch plleup generated by the ACTS 2 6000- 1 503:0.0012 | 8 __ | L 1 s03:0.0048 | £ 401 1 s03: 0.0132
framework 2 4000- S I 2 3.
Building (FRNN Python >
| g () Y 5 * Events are reprocessed and saved 2000- HLHL 2501 f 1L o 1E|{
Filterin Pytorc - . [o o TR miaA 4] g n
g y aS CSV fIIeS OD OOD 0001 0.002 0003 0004 0005 UD.dDO [}002 0004 0006 DOOB DﬂlU | 0.00 U.;JS U.Ilﬂ 0..15 D.IZU
to IC o - - embedding time [s] building time [s] iltering time [s
GNN Pytorch We measure the average time it fltering time 5
Track labeling (CC) Python takes to process the 100 events 0.
i . l- 1 s00: 0.0259
ExaTrkX Model Ensemble + Platform: NERSC V100 GPUs 600- - — %ot 0070 ol oh s ooae
o h h h I 1 s02: 0.0058 i 1 s02:0.0276
Set up the Server to serve the whole . . 203 0.0070 2 _ 1 503:0.0337
pipeline or partial pipeline g 400 | £ J - 1 504:0.0579
* Implemented a standalone client o I o .
code that sends and recelves data _ . . [HL[_ | [hit
from the server Five service options: oL 1l Ififinn oo g B :1:][']} —
0.000 0.005 0.010 0.015 0.020 ' ' ' ’ '
. Offloading each step to the server S = 0: no server (direct inference) gnn time (5] e
will inevitably introduce overhead S = 1: serving Pytorch models - Embedding runs on the server for options s01 and s03. We observe ~0.9 ms overhead, which
- Data preparation for offloading S = 2: serving FRNN would depend on the input dataset size
« Data transfer S = 3: serving all models separately FRNN are implemented slightly differently between “no server” and with server
 To minimize the overhead, we S = 4: serving the ensemble model * £ero copy for “no server” case
ensemble individual models and build o g_i#ering seefms to yieI? sigli\llaNr performance without or without server, however, we see
an ensemble model that performs the fiérent pertormance for |
A ST Those measurements were performed - Ensemble model seems not performing as well as models served separated. Under
end-to-end track finding . _ o
on the same machine investigation.

Concurrent event processing

Conclusions and Outlook

From the client side, we use multithreading to process events for local models or

to send requests for remote ensemble models * We implemented the ExaTrkX track finding as a Service and first

measured the overhead for offloading crucial steps to the server,

respectively and collectivel
We observe that for both local models and remote ensemble models, the total P y y

inference time increases when concurrent requests/executions are enabled * We observed that Communlcatlons_between the client and server is a
Local Mode Ensemble Model small overhead, even thought relatively large, for a small dataset
] 1 101: 0.0392 25- — 101:0.0550 » Continue studies in the future
20+ t02: 0.0387 t02: 0.1057
.hl [t04: 0.0710 207 L t04:0.2091 * Measuring the performance with more realistic data and models
2 [t08: 0.1406 Jg s 1 t08: 0.4168 . o .
g - [t16: 0.2661 g _ [t16: 0.8062 » Testing the scalability of the service
10 - .
;. ’J} llﬂ Jf'J]L J“J]LW * Measuring the network latency
5.
0 = m.rH—[Ln.n . —a) [H ln 00n | | | « Estimating resource requirements for online data processing
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 . 0.8 1.0
Time [s] Time [s]

Reference: Eur. Phys. J. C 81, 876 (2021)

Acknowledgement:

L : s
af Fermilab A .
Frerener I mg 'mn::f' This research used resources of the National Energy Research
'W' Scientific Computing Center (NERSC), a U.S. Department of
BERKELEY LAB YOUNGSTOWN Energy Office of Science User Facility located at Lawrence
e el STATE UNIVERSITY Berkeley National Laboratory, operated under Contract No. DE-
AC02-05CH11231 using NERSC award ERCAP0021226

Hsu is supported by NSF award No. 2117997.

UNIVERSITY of WASHINGTON

