
Motivations

• Implemented a standalone client 

code that sends and receives data 

from the server

• Offloading each step to the server 

will inevitably introduce overhead

• Data preparation for offloading

• Data transfer

• To minimize the overhead, we 

ensemble individual models and build 

an ensemble model that performs the 

end-to-end track finding

Implementation

• Embedding runs on the server for options s01 and s03. We observe ~0.9 ms overhead, which 

would depend on the input dataset size

• FRNN are implemented slightly differently between “no server” and with server

• Zero copy for “no server” case

• Filtering seems to yield similar performance without or without server, however, we see 

different performance for GNN

• Ensemble model seems not performing as well as models served separated. Under 

investigation.

Track reconstruction (Client)

Results

Conclusions and Outlook

• We implemented the ExaTrkX track finding as a Service and first 

measured the overhead for offloading crucial steps to the server, 

respectively and collectively

• We observed that communications between the client and server is a 

small overhead, even thought relatively large, for a small dataset

• Continue studies in the future

• Measuring the performance with more realistic data and models

• Testing the scalability of the service

• Measuring the network latency

• Estimating resource requirements for online data processing

From the client side, we use multithreading to process events for local models or 

to send requests for remote ensemble models

We observe that for both local models and remote ensemble models, the total 

inference time increases when concurrent requests/executions are enabled

Experimental setup

• The timing measurements use 100 

heavy neutral lepton events without 

pileup generated by the ACTS 

framework 

• Events are reprocessed and saved 

as csv files

• We measure the average time it 

takes to process the 100 events

• Platform: NERSC V100 GPUs

• Set up the Server to serve the whole 

pipeline or partial pipeline

Five service options:

S = 0: no server (direct inference)

S = 1: serving Pytorch models

S = 2: serving FRNN

S = 3: serving all models separately

S = 4: serving the ensemble model

Those measurements were performed 

on the same machine

ExaTrkX as a Service

(1) Fermi National Accelerator Laboratory, (2) University of Washington, A3D3, 

(3) Lawrence Berkeley National Laboratory, (4) Youngstown State University 

Yongbing Feng(1), Shie-Chieh Hsu(2), Xiangyang Ju(3), Alina Lazar(4)

Concurrent event processing

Why Inference as-a-Service for 

production?

• Factorize out ML framework

• Easy support for different ML 

frameworks & models

• Factorize out algorithm scheduling.

• ML models can be deployed 

on different coprocessors 

simultaneously and easily

• Portable solution to supporting 

different coprocessors

• No need for client to rewrite 

code for specific languages

• Event batching → more efficient and 

sufficient utilization of coprocessors

• Allow access to remote AI 

accelerators, like GPUs

ExaTrkX (Server)

ExaTrkX Track 

Finding Server

Spacepoints

Track candidates

Step name in the 

pipeline

Triton server 

backend

Embedding Pytorch

Building (FRNN) Python

Filtering Pytorch

GNN Pytorch

Track labeling (CC) Python

ExaTrkX Model Ensemble

Track finding takes majority of the tracking 

reconstruction time. The ExaTrkX pipeline 

provides a promising acceleration by using the 

Graph Neural Network. The goal is to setup the 

ExaTrkX pipeline as a Service

Reference: Eur. Phys. J. C 81, 876 (2021)

Acknowledgement: 

This research used resources of the National Energy Research 

Scientific Computing Center (NERSC), a U.S. Department of 

Energy Office of Science User Facility located at Lawrence 

Berkeley National Laboratory, operated under Contract No. DE-

AC02-05CH11231 using NERSC award ERCAP0021226

Hsu is supported by NSF award No. 2117997.


