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ABSTRACT

The CMS experiment will be upgraded to take advantage of the rich and
ambitious physics opportunities provided by the High Luminosity LHC. Part of
this upgrade will see the first level (Level-1) trigger use charged particle tracks

from the full outer silicon tracker as an input for the first time. The
reconstruction of these tracks begins with on-detector hit suppression, identifying
hits (stubs) from charged particles with transverse momentum (pT ) > 2 GeV

within the tracker modules themselves. This reduces the hit rate by one order of
magnitude with 15,000 stubs being produced per bunch crossing. Dedicated
off-detector electronics using high performance FPGAs are used to find track
candidates at 40 MHz using a road-search based pattern matching step. These
are then passed to a combinatorial Kalman filter that performs the track fit for
O(200) tracks. This overall track finding algorithm is described, as is the ongoing
work developing the track fitting firmware and a boosted decision tree approach

to track quality estimation. The tracks are used in a variety of ways in
downstream algorithms, in particular primary vertex finding in order to identify

the hard scatter in an event and separate the primary interaction from an
additional 200 simultaneous interactions. A novel approach to regress the

primary vertex position and to reject tracks from additional soft interactions uses
a lightweight 1000 parameter end-to-end neural network. This neural network

possesses simultaneous knowledge of all stages in the reconstruction chain, which
allows for end-to-end optimisation. The improved performance of this network
versus a baseline approach in the primary vertex regression and track-to-vertex

classification is shown. A quantised and pruned version of the neural network has
been deployed on an FPGA to match the stringent timing and computing

requirements of the Level-1 Trigger. Finally, integration tests between the track
finder and vertexing firmware are shown using prototype hardware
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1 Introduction

The Compact Muon Soleniod (CMS) experiment [1] is one of two general purpose detectors situated around
the Large Hadron Collider (LHC). The LHC provides CMS with a 40 MHz bunch crossing rate and an
average of 25 simultaneous proton-proton interactions per bunch crossing (pileup). At this bunch crossing
rate the amount and bandwidth of data produced by CMS is too large to process and store. Therefore
a two-stage trigger [2] is used to select events based on their physics potential. The first hardware-based
trigger, Level-1, was originally designed to make decisions on lower granularity calorimeter and muon system
data with a fixed latency < 4 µs and output rate of 100 kHz. This is followed by a CPU farm high level
trigger with an output rate of 1 kHz for storage and offline analysis.

By 2029 the LHC will have completed its High Luminosity (HL) [3] upgrades which will increase its
instantaneous luminosity by three times, this will provide 3000 fb−1 of integrated luminosity for the general
purpose LHC experiments by the end of the 2030s. While this increased luminosity aids searches for new
rare process physics and precision standard model measurements it poses a large challenge to the current
detectors and triggering systems with pileup (PU) increasing to a maximum of 200.

To maintain physics sensitivity with the HL-LHC and exploit advancements in both detector and com-
puting hardware the CMS experiment is being upgraded [4], including the trigger system [5]. The high
pileup would see current Level-1 accept rates increase to 4MHz, so in order to reduce this to a new rate
of 750 kHz, silicon tracker tracks will be used at Level-1 for the first time. This necessitates a new outer
tracker for CMS which will stream data to a new all-FPGA trigger system. The use of these tracker tracks
also allows for the identification of the hard scatter, or primary vertex, in an event leading to the separation
of the primary interaction from additional pileup interactions reducing the impact of background pileup on
downstream triggering algorithms and maintaining controllable trigger rates.

2 The CMS Phase-2 Upgrade

The Phase-2 upgrade of CMS is a wide program of replacements and upgrades to the detector. Including a
replacement of the endcap calorimetery to give high-granularity 4D shower reconstruction, higher η coverage
in the muon systems and upgraded electronics throughout the detector subsystems. The all-silicon tracker
will be replaced with a higher radiation tolerant, higher η coverage tracker [6], schematically shown in Fig.
1. The outer tracker will be used as input to the Level-1 trigger as the inner tracker data bandwidth is
too high and the data too difficult to extract to process in the fixed trigger latency. In order to reduce the
data bandwidth to within manageable levels, new ”pT ” modules [7] for the outer tracker have also been
designed consisting of two closely spaced layers (1.6 - 4.0 mm) of silicon and on-module correlation logic
giving a tuneable pT cut on charged particle tracks of 2-3 GeV. Due to this on-detector pT cut, the number
of pairs of hits or ‘stubs’ being passed to the Level-1 trigger (at the full 40 MHz) is reduced by a factor of
10 compared to no pT cut. This will still see ≈ 15,000 stubs per bunch crossing needing to be processed,
matched to charged particle trajectories and fitted all within 4 µs to meet the latency requirements of the
Level-1 trigger.

The Phase-2 upgrade of the Level-1 trigger will see the total rate being increased to 750 kHz with a
longer latency per event of < 12.5 µs due to improvements to on-detector buffers. This, combined with
the use of state-of-the-art FPGAs, will see more complex algorithms being used at Level-1. With access
to tracker tracks it will become possible to perform particle flow reconstruction which allows the Level-1
trigger to reconstruct full events with all detector subsystems. However, the use of these algorithms is highly
dependent on the ability of the trigger to reduce the impact of pileup. The most important tool for reducing
this background pileup is the reconstruction of the primary vertex (PV) in an event. Tracks will be used
to locate the hard scatter in an event which other trigger objects can be associated to, such as the tracks
themselves or energy deposits in the calorimeters, thus allowing for the vetoing of additional energy in the
detector from pileup. Another key part of the upgraded trigger is the use of machine learning techniques,
these are particularly suitable for finding optimal solutions on reduced inputs that the environment of the
trigger provides. This allows for a reduction in the lengthy algorithmic and firmware development process
of more traditional approaches.
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Figure 1: A slice in r-z of the Phase-2 CMS tracker. In green and yellow the inner tracker with increased η
coverage up to 3.8 and in red and blue the new outer tracker consisting of pT modules with a tuneable pT
cut and an η coverage < 2.4.

3 Track Finding

In order to reconstruct tracks from collections of hits or ‘stubs’ from the detectors pT modules a two-part
‘hybrid’ algorithm formed of two previously demonstrated algorithms [8],[9] will be used. The first part is
a tracklet pattern recognition step used to form track candidates from pairs of seed stubs, and secondly, a
combinatorial Kalman Filter (KF) fits the tracks and calculates the helix parameters. The algorithm follows
these main steps:

• Tracklet seeds are formed from stub doublets in specific combinations of adjacent layers and disks.

• Tracklet helix parameters are calculated from the seed using the constraint that the track originated
from the interaction region.

• The tracklet is projected to the remaining layers and disks and stubs are matched to it within a set
window.

• Duplicate tracklets are merged which share three or more layers and disks.

• A combinatorial Kalman Filter seeded from the tracklet candidate has associated stubs iteratively
added to it, updating the KF state and covariance matrices. This selects the best stub combination
for the track and calculates the pT , η, ϕ and z0 (the track’s distance from the beamspot, along the
beam line).

This track finding algorithm performs well with a > 95% efficiency for all tracks |η| < 2.4, pT > 2 GeV.
While this has been successfully demonstrated in emulation the firmware development is ongoing with key
sections of the track finding chain being tested in hardware. Due to the geometry of the CMS tracker a
cosh(|η|) relationship between transverse impact parameter (z0) resolution and η can be see in Fig. 2, this
relationship is important when designing vertex finding and association algorithms where the resolution of the
tracks themselves dominate the achievable resolution of a vertex. Also shown is the fraction of non-genuine
(or fake) tracks (those not associated to real tracking particles as defined in Monte Carlo simulations based
on stub matching) as a function of pT . These fakes are produced when combinations of stubs that do not
originate from a real charged particle are combined by the track finding. As these represent a large fraction
(≈ 10%) of tracks at higher pT strategies for reducing the number of fakes is important to not influence
downstream trigger performance where algorithms typically rely on high pT signatures.
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Figure 2: Track z0 residuals are calculated in a
number of η bins and the 68% and 90% quan-
tiles are shown for each bin, also shown is the
expected cosh(|η|) fit.

Figure 3: Non-genuine fraction of recon-
structed tracks (number of non-genuine tracks /
total number of reconstructed tracks) for multi-
ple pT bins showing a relative increase at higher
pT s.

3.1 Track Quality

In order to reduce the number of non-genuine tracks the quality of the track fit can be used. The KF
produces uncertainties in the r − ϕ and r − z planes that can be combined to give a χ2

rϕ and χ2
rz fit as

well as an additional χ2
bend which depends on the detector geometry. Together, these fitting parameters, as

well as additional constraints on the number of stubs a track has been formed from, can be used to impose
quality criteria on tracks. These have been shown to be useful in highly pT sensitive calculations such as
track-based Emiss

T where Emiss
T trigger thresholds can be reduced by up to 50% by imposing strict quality

cuts on tracks.
While a single working point per individual algorithm performs well it is more useful for downstream

users to have flexible working points based on the overall ’quality’ of a track which can be derived from
various track features. For this reason, Boosted Decision Trees (BDTs) were trained using track helix and
fit parameters to identify real versus fake tracks in a binary classification task [10]. These BDTs outperform
the discrimination power of a single tuned cut as shown in Fig. 4 while also providing a flexible threshold
for multiple downstream algorithms.

These BDTs were designed to be lightweight with a tree depth of 3 and with 60 iterations due to firmware
constraints in the Level-1 trigger. Custom HDL was used to give BDTs with < 1% resource usage on the
target FPGA (Xilinx UltraScale+ VU13P) used for the track finding algorithm and with a total latency of
33 ns running at 250 MHz making them a viable option for track quality assessment.

4 Vertex Finding

The primary vertex is the location along the beam line of the hard proton-proton scatter in an event. Offline,
it is estimated as the reconstructed vertex with the highest track

∑
p2T [11]. It is important to locate this

vertex at Level-1 as it reduces the impact of pileup on downstream algorithms. When other trigger objects
are associated to the vertex the trigger can have cleaner energy sums, better lepton isolation and a reduction
in the number of objects being passed to downstream algorithms making them computationally feasible in
the strict latency requirements.
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Figure 4: Track finding efficiency versus non-genuine fraction for the track-based Emiss
T cut on χ2 and the

BDT approach for track quality estimation.

4.1 Baseline Approach

The baseline approach to vertex finding [5] creates a histogram in z0 of all tracks weighted by their pT . This
histograms consists of 256 bins in a z0 range of -15,15 cm. A three bin window is then passed across the
histogram in order to find the three consecutive bins with the highest total weight. The centre of the middle
of these three bins is returned as the primary vertex. This method has been implemented in firmware and
run in hardware with a latency of 81 ns at 360 MHz. There are some key issues with this method; firstly,
there is no accounting for the high pT fakes as shown in Fig. 3. These can appear with other pileup tracks as
high pT clusters in the histogram returning a fake vertex. Secondly, there is no correction for the degradation
in z0 resolution in high η tracks as shown in Fig. 2 which leads to a worse resolution of the PV.

However, to associate tracks to this vertex and filter out PU tracks, an η dependent window in z0 is used.
This is reasonably effective with a 91% rate of correctly assigning PV tracks to the vertex and a 10% rate of
assigning fake or PU tracks to the vertex. This is a fast method but does not take into account the quality of
the tracks which can degrade the performance as well as other track features that could better discriminate
pileup from PV tracks.

5 End-to-End Vertex Finding

By taking into account multiple track features when weighting the baseline approach’s histogram it is possible
to improve the performance. Additional weightings such as 1

η2 (as an approximation of the fit in Fig. 2) can

be shown to give a 10% improvement in the core of the vertex error residual. Cuts on the output of the track
quality BDT shown in Section 3.1 can give a 40% improvement in the tails of the residual. The combination
of these features is non-trivial so an iteratively learnt approach using a dense neural network was employed.
Additionally, it was found that allowing for a more complex pattern recognition of the peak in the weighted
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histogram improved performance when replacing the baseline’s three bin window with a 1D convolutional
neural network. Finally, the track-to-vertex association also benefits from more complex track features aside
from η and distance to the vertex so another dense neural network was used for this binary classification
task. While the regression of the primary vertex is an important target for developing this algorithm, the
association of tracks to this vertex is ultimately the most important information being passed to downstream
physics algorithms. For this reason, an end-to-end approach was adopted which uses both an event-level
primary vertex regression and track-level track-to-vertex association that are learnt simultaneously allowing
the histogram weighting and peak pattern finder to be optimised for the track-to-vertex association as well.

5.1 Architecture and Back Propagation

The network has three main parts as shown in Fig. 5 with the weight network feeding into a differentiable
histogram leading to the 1D convolutional pattern recognition and then outputting to a differentiable ArgMax
to regress the PV position with a pseudo-Huber loss function. The difference in position between vertex and
track z0 along with other features is then used to perform the track-to-vertex association with a binary cross
entropy loss function.

Figure 5: End-to-end network architec-
ture showing the three distinct networks in
colour as well as the position of the his-
togram and ArgMax layers.

In order to perform back propagation and allow the weight
network to learn from both the PV regression and track-to-
vertex association losses, custom histogram and ArgMax layers
were written. The histogram with bin hi is filled with track
z0, weighted by weight w which is a learnt function of track
features:

hi =

tracks∑
j=0

δ(j ∈ bin i) w(pT,j , ηj ,MV Aj) (1)

resulting in the following gradients

∂hi

∂z0
= 0 and

∂hi

∂w
=

tracks∑
j=0

δ(j ∈ bin i) (2)

which are implemented as custom TensorFlow operations.
The ArgMax layer has an input of a vector x (in this case

the convolved histogram) of N elements and is defined as:

N∑
i=0

i
exi/T∑N
j=0 e

xj/T
(3)

where T is a tuned hyperparameter of the network which
allows this layer to return an approximate one-hot encoding of
the convolved histogram.

5.2 Performance

This end-to-end approach outperforms the baseline approach.
Firstly, it sees a 55% reduction in the tails of the residual due
to better filtering of fake clusters caused by high pT fake tracks,
this is shown in Fig. 6. Secondly, in the track-to-vertex associ-
ation the end-to-end approach better discriminates PV tracks from PU and fakes with a rate of 96% at the
same 10% false positive rate as shown in the receiver operating characteristic curve in Fig. 7. It is also able
to pass down a flexible threshold for downstream algorithms to use as opposed to a set working point given
by a traditional cut-based approach.
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Figure 6: True PV - Reconstructed PV for
the Baseline and NN approaches. NN refers
to the floating point approach while QNN is
the quantised approach described in Section
5.3

Figure 7: Receiver Operating Characteris-
tic (ROC) curve for the Baseline and NN
approaches to track-to-vertex association.
Shown as true positive rate versus false pos-
itive rate.

5.3 Implementation

As this end-to-end approach uses the same building blocks as the baseline approach, much of the baseline
approach’s firmware can be reused and individual parts of the network can be inserted. For this reason the
network is split into three individual parts, the weight, pattern and association networks, shown in Fig. 5.
These are run through the hls4ml [12] tool that generates High Level Synthesis (HLS) firmware for each
network which are then wired within the existing baseline approach.

Due to the overall parallelism of the system architecture of the Level-1 trigger the weight and association
networks that operate at a track-level are to be implemented multiple times. This makes the small resource
usage and low latency of these parts of the network critical. Two approaches were used in order to reduce
the network size. Firstly, quantized aware training restricts the bitwidths of learnt weights and biases in the
training phase using the QKeras package [13]. This allows fine tuned setting of fixed bitwidths for each layer
thus reducing the total amount of FPGA resources needed per operation in the network while maintaining
the performance of the network. Secondly, network pruning [14], the technique of iteratively removing close
to zero weights over multiple training cycles, is used to reduce the total number of operations needed by the
network, this is particularly useful for reducing the number of multiplications required at inference time.

The resource usage of a Xilinx UltraScale+ VU9P running at 360 MHz is shown in Table 1. Both floating
point and a quantised and pruned version of the network are shown demonstrating the large reduction in
resource usage especially in reducing the Digitial Signal Processor (DSP) usage which is a limiting factor in
these FPGAs. The performance of these two version of the network are shown in Figs. 6 and 7 where little
difference is seen between the NN and QNN.

6 Integration Testing

In order to validate the functioning of the upgraded Level-1 trigger, testing of algorithms on their target
hardware is required. Custom carrier boards for specific FPGAs were designed for different parts of the trigger
with the track finding being performed on the Apollo [16] board and much of the Level-1 trigger using either
the Serenity [15] or APx boards. Both the boards and algorithms have reached a level of maturity that
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Network Latency
(ns)

Initiation
Interval (ns)

LUTs % DSPs % BRAMs % FFs %

NN (Q) Weights 22 (14) 2.7 (2.7) 2.52 (0.90) 19.98 (0.00) 0.00 (0.00) 0.72 (0.36)
NN (Q) Pattern 58 (42) 51 (35) 4.27 (4.43) 3.74 (0.00) 5.28 (5.28) 3.22 (3.15)
NN (Q) Assoc. 30 (25) 2.7 (2.7) 0.54 (7.92) 107.64 (0.54) 0.00 (0.00) 2.70 (2.34)
Baseline 44 2.7 2.40 0.00 1.90 1.40

Table 1: Resource usage and latencies of a Xilinx VU9P running at 360MHz for the floating point Neural
Network (labelled NN) and the quantised and pruned version (labelled Q and in parenthesis in the table).
Shown are total resource usage for all replications of the weight and association networks, corresponding to the
number of parallel track streams used in the Level-1 trigger (the pattern network is only implemented once).
Also included is the baseline approach, the NN approaches are additional to these resources and latency as
they use existing parts of the baseline firmware. These resource usages are estimates from a Vivado synthesis
of the networks and the latencies are from a C-Simulation of the RTL logic using ModelSim.

allows for system integration testing to begin. Single board tests of parts of the track finding chain have
been completed with sub sections of the tracklet algorithm being interfaced with the Kalman Filter and
compared to software emulation. Single board tests have also been performed with both the baseline and
end-to-end approaches to vertex finding. Another part of these tests is the integration of subsystems. High
speed 25 GB/s) fibre optic connections are used to transmit the output of one algorithm to another running
on separate hardware. This has led to a demonstration of the track finding output step outputting tracks to
the vertex finding and a vertex being recorded in output buffers, an algorithmic overview is shown in Fig.
8 and the corresponding hardware setup for this is shown in Fig. 9. This not only allows for the hardware
boards themselves to be tested but also the performance of algorithms in more ‘real-world’ scenarios with
data being received over fibre optics.

Figure 8: Overview of algorithms and links
used for board-to-board integration testing
of the track finder to vertex finder.

Figure 9: Hardware demonstrator of the
track finding output running on the board
on the left outputting tracks over five fibre
optic links to the vertex finding running on
the board on the right where the vertex is
calculated and stored in buffers.
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7 Conclusion

The HL-LHC upgrade program will expand the physics reach of the CMS experiment and with key upgrades
to both the detector and trigger system it will maintain and expand its physics capabilities despite the high
pileup conditions. An improved outer tracker using specialised modules with a tuneable on-detector pT cut
will allow tracker tracks to be reconstructed at the Level-1 trigger for the first time. A tracklet pattern
recognition followed by combinatorial Kalman Filter will be used to reconstruct tracks within 4 µs and an
additional BDT for track quality will be used to reduce the impact of fake tracks in downstream algorithms.
Global event variables such as the primary vertex will also be reconstructed in the Level-1 trigger reducing
the impact of pileup on downstream algorithms and improving trigger performance. A novel approach to
the regression of this vertex and track-to-vertex association using an end-to-end neural network is shown
to outperform the baseline approach while maintaining low latency and low resource usage. Finally, the
demonstration of these systems is underway with key integration tests between the track finder and vertex
finding being completed.
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