
Proceedings of the CTD 2022
PROC-CTD2022-11
January 30, 2023

Exploration of different parameter optimization algorithms within the
context of ACTS software framework

Rocky Bala Garg1, Heather Gray2, Elyssa Hofgard1, Lauren Tompkins1

1Department of Physics, Stanford University, USA
2Department of Physics, University of California at Berkeley and Lawerence Berkeley

National Laboratory, USA

ABSTRACT

Particle track reconstruction, in which the trajectories of charged particles are
determined, is a critical and time consuming component of the full event
reconstruction chain. The underlying software is complex and consists of a
number of mathematically intense algorithms, each dealing with a particular

tracking sub-process. These algorithms have many input parameters that need to
be supplied in advance. However, it is difficult to determine the configuration of

these parameters that produces the best performance. Currently, the input
parameter values are decided on the basis of prior experience or by the use of
brute force techniques. A parameter optimization approach that is able to

automatically tune these parameters for high performance is greatly desirable. In
the current work, we explore various machine learning based optimization

methods to devise a suitable technique to optimize parameters in the complex
track reconstruction environment. These methods are evaluated on the basis of a
metric that targets high efficiency while keeping the duplicate and fake rates

small. We focus on derivative free optimization approaches that can be applied to
problems involving non-differentiable loss functions. For our studies, we consider
the tracking algorithms defined within A Common Tracking Software (ACTS)
framework. We test our methods using simulated data from ACTS software
corresponding to the ACTS Generic detector and the ATLAS ITk detector

geometries.

PRESENTED AT

Connecting the Dots Workshop (CTD 2022)
May 31 - June 2, 2022

Connecting the Dots. May 31 - June 2, 2022

1 Introduction

The reconstruction of charged particles’ trajectories, commonly known as tracking, is one of the most im-
portant but computationally extensive tasks of the full event reconstruction chain. Precise and efficient
measurements of charged particle trajectories are critical for the entire physics program: from reconstruct-
ing low momentum tracks in order to identify primary vertices, through using medium momentum tracks to
identify heavy flavor decays and calculate jet energies, to accurately measuring high momentum messengers
of electroweak particles or new physics. The underlying tracking software consists of a number of mathemat-
ically complex algorithms, each dealing with a particular tracking sub-process. These algorithms depend on
a number of input parameters whose values need to be determined. Great efforts are put into optimizing
these input parameters as these efforts yields both resource savings and physics performance improvements.
However, it is difficult to know the configuration of these parameters that can produce the best performance.
The values of these input parameters are highly dependent on the underlying tracking geometry and material
configuration. They are also affected by other factors such as the number of simultaneous pp collisions known
as pile-up , center-of-mass energy of collision, target physics process, etc. A different set of these parameter
values is needed if underlying tracking geometry or material configuration changes. Currently, most of these
optimizations are performed using the physicist’s previous experience or specialized brute-force techniques.
Approaches that can automatically tune these parameters for high performance are greatly desirable. Hy-
perparameter tuning algorithms used in machine learning offer a number of different approaches in which
the optimal parameters can be learned. These approaches have the potential to reduce the effort spent in
finding the configurations, as well as they can scan a larger range of parameters, allowing for potentially
more efficient solutions. With the upcoming High Luminosity Large Hadron Collider (HL-LHC) upgrade,
we expect more complex tracking environment which would require more refined parameter tuning.

In this study, we have explored five different optimization approaches, which include: Evolutionary
Algorithms [1], Optuna Hyperparameter optimization [2], Lipschitz Optimization [3], Scikit Optimization [4]
and Orion Hyperparameter tuning [5]. These approaches are described in more detail later. Initial studies
on this topic were presented in [6]. This work expands on that initial work, include a systematic study of
several optimization algorithms and two components of charged particle reconstruction.

2 Problem Summary

2.1 Testing Framework

We have used “A Common Tracking Software (ACTS)” [7] for our studies which is a community-driven
tracking software suite consisting of high-level track reconstruction modules. ACTS provides track recon-
struction algorithms within a generic, experiment-independent open-source software toolkit. It includes data
structures and algorithms for performing track reconstruction in addition to a tool for fast track simulation.
The algorithms are designed to be inherently thread-safe to support parallel code execution. The implemen-
tation is designed to be fully agnostic to detector technologies, and the event processing framework, so that
it can be used with different experiments. A number of detector geometries has already been implemented
within ACTS. Some of these are: the Belle-II Detector [8], the ATLAS ITk geometry [9], the sPHENIX
Detector [10] and the LDMX Detector [11]. The underlying tracking algorithms need to be tuned as per
the specific detector geometry in order to achieve ultimate physics performance. Therefore, ACTS provides
ideal environment for our studies and allows us to tune same parameters for different detector geometries.

ACTS provides Generic detector geometry which is equivalent to a typical full silicon LHC detector. The
Generic Detector is a hermetic detector with silicon based tracker consisting of high granularity pixel layers
surrounded by outer tracking layers. A schematic of Generic detector has been shown in Figure 1. In order
to perform our studies, we have used 14TeV tt dataset with pile-up = 140 and 200. The data is generated
using Pythia8 [12] and simulated through Generic detector using the ACTS fast simulation algorithm. The
input particles are required to have PT > 1GeV and |η| < 2.5.

1

Connecting the Dots. May 31 - June 2, 2022

Figure 1: A schematic of ACTS Generic detector used in this study. This figure is taken from [13].

2.2 Tracking Algorithms

Two different tracking algorithms from the ACTS tracking framework were considered for these studies:

• Track finding/fitting: The combinatorial kalman filter (CKF) [14] algorithm implemented within
ACTS framework is used. CKF combines both track finding and fitting in a tree-search based al-
gorithm. In ACTS, the main bottleneck in CKF performance is the track seeding algorithm, the
algorithm that provides initial track seeds to CKF. There are around 20 parameters in track seeding
algorithm. Many of these parameters are dependent on the underlying detector geometry. However,
other geometry independent parameters can significantly impact track seeding performance. We have
chosen to optimize the following geometry independent parameters:

1. maxPtScattering: Upper PT limit for scattering angle∗ calculations.

2. impactMax: maximum value for impact parameter.

3. deltaRMin: minimum distance in r between two measurements within one seed.

4. deltaRMax: maximum distance in r between two measurements within one seed.

5. sigmaScattering: number of sigma used for scattering angle calculations.

6. radLengthPerSeed: average radiation lengths of material on the length of a seed.

7. maxSeedsPerSpM: number of 3-D space-points in top and bottom layers considered for com-
patibility with middle space-point.

8. cotThetaMax: maximum cotTheta angle between two space-points in a seed to be considered
compatible.

• Vertex finding/fitting: The Adaptive Multi Vertex Finder (AMVF) [15] algorithm implemented
within ACTS framework is used. AMVF performs simultaneous vertex† finding and multi-vertex
fitting with the help of a multi-vertex fitter. We have considered the following 5 parameters of AMVF
for optimization:

1. tracksMaxZinterval: maximum z-interval used for adding tracks to multi-vertex fit.

2. maxVertexChi2: maximum χ2 value for tracks to be compatible with fitted vertex.

3. maxMergeVertexSignificance: maximum significance on the distance between two vertices to
allow merging.

4. minWeight: minimum weight assigned to the track for track to be considered compatible with
vertex candidate.

5. maximumVertexContamination: maximum vertex contamination value.

∗the angle by which particle scatters after colliding with detector material.
†Actual proton-proton collision points.

2

Connecting the Dots. May 31 - June 2, 2022

2.3 Optimization Algorithms Explored

We have performed optimization of CKF and AMVF parameters using 5 different optimization algorithms.
Optimized parameter performance corresponding to each optimization algorithm has been compared with
the default parameter performance of ACTS.

Each algorithm starts with a random initial parameter configuration chosen from the input parameter
range. The algorithms run for a number of iterations and, at each iteration, evaluate the score of the current
parameter configuration where the score/objective function is based on the tracking algorithm performance.
At each new iteration, the algorithms try to maximize or minimize the score by providing better parame-
ter configuration using dedicated parameter estimation methods. The algorithms use different estimation
methods. They typically keep track of previous configurations and scores to get better configurations at new
iterations. An overview of these optimization algorithm is provided below:

• Evolutionary Algorithms (EA) [1]: This algorithm is based on a process analogous to the genetic
evolution in living organisms. It starts by initializing a population of individuals where each individual
refers to one configuration of the input parameter set. We considered a population of size 50 with
each individual assigned to same initial configuration. Then, at each iteration, called a generation,
the fitness of each individual is computed using a customized score function based on the tracking or
vertexing algorithm performance. After the fitness evaluation, simultaneous selections and mutations
are performed on randomly chosen individuals from the population such that better performing ones
are more likely to stay for next generation, and worse performing ones are more likely to be removed.
We used a total of 16 generations for the evolution of our parameters. This algorithm maximizes the
score function and provides the configuration with the best score in the end.

• Optuna HyperParameter Optimization (Optuna) [2]: Optuna is an optimization framework
that consists of multiple hyper-parameter sampling algorithms for parameter selection at each trial.
For our studies, we have used Tree-structured Parzen Estimator (TPE) which fits one Gaussian Mixture
Model (GMM) l(x) to the set of parameter values associated with the best objective values, and a second
GMM g(x) to the remaining parameter values. It chooses the parameter value x that maximizes the

quasi-likelihood ratio l(x)
g(x) .

• Lipschitz Optimization (LIPO) [3]: Lipschitz optimization is based on a simple parameter-free
mathematical model for finding the best x that maximizes the score function f(x). The key idea is to
maintain a piecewise linear upper bound of f(x) and use that to decide which x to evaluate at the next
step. It defines the upper bound of the function f(x) as U(x) = mini (f(xi) + k.||x− xi||2) such that
U(x) ≥ f(x) ∀ x, k is the Lipschitz constant. This algorithm picks new points at random and checks
if the upper bound at the new point is better than the best point seen so far, and if so, it selects this
point as the next step to evaluate.

• Scikit Optimization (Skopt) [4]: This is an optimization framework built inside Python’s sklearn
library [16]. It consists of a number of different parameter optimization techniques. For this study, we
have used the forest optimize algorithm which performs sequential optimization using decision trees.
Skopt runs over a number of iterations and minimizes the score function to provide the best parameter
configuration.

• Oŕıon HyperParameter Tuning (Orion) [5]: Oŕıon is an asynchronous framework for black-box
function optimization. It can be used as a command-line interface as well as python interface. It also
implements a number of different optimization methods including random search and grid search. For
our studies, we have used the random search method based on the uniform probability distribution
provided to the search parameters.

2.4 Performance Evaluation: Score/Objective Function

The score or objective function is one of the most important component of these optimization studies.
Performance and outcome of the optimization algorithms are highly dependent on the form of score function

3

Connecting the Dots. May 31 - June 2, 2022

used. The score function is constructed using the performance metrics of the underlying tracking algorithm.
Positive weights are given to quantities that we want to increase while negative weights are given to quantities
that we want to decrease. Likewise, higher weights are given to more important quantities.

2.4.1 Construction of Score Function for the CKF

The important metrics determining the performance of CKF algorithm are:

• Track Reconstruction Efficiency: fraction of generated particles that have created at least 9 mea-
surements on the traversed detectors and are matched with reconstructed tracks with greater than 50%
probability.

• Fake Rate: Fraction of reconstructed tracks that are not associated with any truth particle.

• Duplicate rate: Fraction of reconstructed tracks associated with same truth generated particle.

• Run Time: Time taken in running the CKF algorithm.

Based on these performance metrics, we constructed the following score function for measuring the CKF
performance for different parameter configurations:

Score/Objective Function = Efficiency−
(
FakeRate +

DuplicateRate

k
+

RunTime

k

)
, k = 7

where k is tuned for optimal tradeoff between different quantities.

2.4.2 Construction of Score Function for the AMVF

The important metrics determining the performance of AMVF algorithm are:

• Eff total: Number of vertices reconstructed by AMVF algorithm out of total detector accepted ver-
tices.

• Eff clean: Number of reconstructed vertices associated to a single true generated particle out of all
vertices within the detector acceptance.

• Eff split: fraction of reconstructed vertices where more than one reconstructed vertices are associated
with same truth particle.

• Eff merge: fraction of reconstructed vertices where one reconstructed vertex is associated to more
than one truth particle.

• Eff fake: fraction of reconstructed vertices that are not associated to any truth particle.

• Resolution:

∆R

R
=

√ ∑
vertices

((xreco − xtruth)2 + (yreco − ytruth)2 + (zreco − ztruth)2)

x2
truth + y2truth + z2truth

Based on these performance metrics of the AMVF, the following score function has been constructed:

Score/Objective Function = (Eff total + 2Eff clean)− (Eff split + Eff merge + Eff fake + Resolution)

4

Connecting the Dots. May 31 - June 2, 2022

2.5 Integration of two frameworks

In order to perform the optimization studies, we have integrated the ACTS tracking framework with our
parameter tuning framework as represented in Figure 2. The tuning framework provides input parameter
values to the ACTS tracking framework. Next, the tracking algorithm runs with these values and returns the
tracking performance to the tuning framework. The tuning framework computes a score based on the tracking
performance and runs a parameter estimation method to evaluate new configuration of input parameters
and pass it again to the ACTS framework. This continues for a number of iterations until optimization
algorithm achieves satisfactory score and corresponding parameter configuration with high performance.

Figure 2: A representation of integration of ACTS tracking software framework with parameter optimization
framework.

3 Results

Performance metrics for the CKF and the AMVF have been evaluated corresponding to different optimized
parameter configurations and compared with the default parameter configuration.

3.1 CKF Optimization Results

The track reconstruction efficiency and duplicate rate as a function of track PT and η for different parameter
configurations is presented in Figure 3. The black solid circles correspond to the default configuration while
the colored markers represent optimized configurations. A clear improvement in performance is observed
with optimized parameters over all the PT and η range, specially in high η range. The table 1 shows the
improvements in terms of the average values of the metrics for different configurations. The fake rate is
negligible for both the default and optimized parameters.

Default EA Optuna LIPO Skopt Orion
Score 69.06 78.88 75.38 77.28 77.05 77.79
Efficiency 93.6% 96.5% 96.7% 96.8% 96.5% 96.3%
Duplicate Rate 72.6% 56.8% 59.8% 60.3% 56.6% 58.7%
Fake Rate 5.56E-03% 6.2E-03% 5.2E-03% 6.8E-03% 5.7E-03% 8.8E-03%
time/event (sec) 50.2 31.1 46.8 37.2 40.2 33.9

Table 1: CKF performance metrics for default and optimized configurations.

The parameter values obtained using different optimization algorithms are found to differ from each other
as can be seen in Figure 4. This variation clearly states that there are multiple local minima in the parameter

5

Connecting the Dots. May 31 - June 2, 2022

Figure 3: Comparison of CKF performance between different optimized configurations and default configu-
ration for tracking efficiency vs. η (upper left), tracking efficiency vs PT (upper right), duplicate rate vs. η
(lower left) and duplicate rate vs. PT (lower right). Black solid circles represent performance corresponding
to default configuration while colored markers represent optimized configurations.

space of CKF performance.

Figure 4: Parameter configurations obtained for CKF from different optimization algorithms.

6

Connecting the Dots. May 31 - June 2, 2022

3.2 AMVF Optimization Results

The number of reconstructed vertices tagged as total, clean, fake, split and merged corresponding to opti-
mized parameters are compared with the default configuration in Figure 5. With the optimized parameters
there are more clean and fewer fake vertices compared to the default. However, there is a trade-off between
the total and split vertices. The position resolution in x, y and z are compared in Figure 6 and shows more
centered z-resolution for optimized configurations. The parameter values obtained by different optimization
algorithms are presented in Figure 7, again emphasizing on the presence of multiple local minima in AMVF
space.

Figure 5: Comparison of AMVF performance between different optimized and default configurations for total
(upper left), clean (upper middle), fake (upper right), split (lower left) and merged (lower right) reconstructed
vertices. Black solid circles represent performance corresponding to the default configuration while colored
ones represent performance corresponding to the optimized configurations.

Figure 6: Comparison of AMVF resolution in x, y and z for different optimized configurations and default
configuration. Black lines represent resolution corresponding to the default configuration while colored lines
represent the optimized configurations.

7

Connecting the Dots. May 31 - June 2, 2022

Default EA Optuna LIPO Skopt Orion

0.5

1

1.5

2

2.5

3

tr
a

c
k
M

a
x
Z

in
te

rv
a

l

Default EA Optuna LIPO Skopt Orion

5

10

15

20

25

m
a

x
V

e
rt

e
x
C

h
i2

Default EA Optuna LIPO Skopt Orion

1

2

3

4

5

6

m
a

x
M

e
rg

e
V

e
rt

e
x
S

ig
n

if
ic

a
n

c
e

Default EA Optuna LIPO Skopt Orion

0.01

0.02

0.03

0.04

0.05

m
in

W
e

ig
h

t

Default EA Optuna LIPO Skopt Orion
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
a

x
im

u
m

V
e

rt
e

x
C

o
n

ta
m

in
a

ti
o

n

Figure 7: Parameter configurations obtained for the AMVF from the different optimization algorithms.

4 CKF optimization using the ATLAS ITk geometry within ACTS

We used the same optimization techniques for the ATLAS ITk geometry [17], which is shown in Figure 8,
within the ACTS framework. We optimized the same CKF parameters using tt data with pile-up = 200
having PT > 1GeV and |η| < 4.0. We used the same CKF score function with k = 5.

Figure 8: Diagram showing ATLAS ITk geometry.

The comparison of performance for track reconstruction efficiency and duplicate rate as a function of PT

and η is shown at [18].

5 Conclusions

We have presented the implementation and performance of five different derivative-free optimization algo-
rithms within the context of ACTS software framework and demonstrated our results using ACTS Generic
detector and ATLAS ITk detector, both integrated within ACTS framework. We have performed our
studies using Combinatorial Kalman Filter and Adaptive Multi Vertex Finder tracking algorithms. The per-
formance of optimized parameters have been compared with default configuration currently present within
ACTS framework. Our results show that the different optimization algorithms are able to automatically find
better performing parameter configurations. These studies demonstrate the potential of such algorithms to
be used for the automatic tuning of tracking algorithms to different detector geometries.

8

Connecting the Dots. May 31 - June 2, 2022

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation under Cooperative Agreement OAC-
1836650.

References

[1] Evolutionary Algorithms, “https://deap.readthedocs.io/en/master/index.html”.

[2] Optuna HyperParamter Optimization Framework, “https://optuna.org/”.

[3] Cedric Malherbe, Nicolas Vayatis, “Global optimization of Lipschitz functions”
[https://arxiv.org/abs/1703.02628].

[4] Scikit Optimization, “https://scikit-optimize.github.io/stable/”.

[5] Orion HyperParameter Tuning Framework, “https://orion.readthedocs.io/en/stable/index.html”.

[6] Peter Chatain, Rocky Garg and Lauren Tompkins, “Evolutionary Algorithms for
Tracking Algorithm Parameter Optimization” EPJ Web Conf., 251 (2021) 03071
[https://doi.org/10.1051/epjconf/202125103071].

[7] Ai, X., Allaire, C., Calace, N. et al., “A Common Tracking Software Project”, Comput Softw Big Sci
6, 8 (2022), [https://doi.org/10.1007/s41781-021-00078-8].

[8] T. Abe, I. Adachi, K. Adamczyk, S. Ahn, H. Aihara, K. Akai, M. Aloi, L. Andricek, K. Aoki, Y. Arai
et al., Belle II Technical Design Report (2010) [1011.0352].

[9] “Expected tracking and related performance with the updated ATLAS Inner Tracker layout at the
High-Luminosity LHC”, ATL-PHYS-PUB-2021-024.

[10] Sarah Campbell (for the sPHENIX Collaboration), “sPHENIX: The next generation heavy ion detector
at RHIC”, J. Phys.: Conf. Ser. 832 012012 (2017) [https://arxiv.org/abs/1611.03003].

[11] T. Akesson, A. Berlin, N. Blinov, O. Colegrove, G. Collura, V. Dutta, B. Echenard, J. Hiltbrand, D.G.
Hitlin, J. Incandela et al., Light Dark Matter eXperiment (LDMX) (2018) [1808.05219].

[12] Pythia8 Manual, “https://pythia.org/”.

[13] M. Kiehn et al, “The TrackML high-energy physics tracking challenge on Kaggle”, EPJ Web of Confer-
ences 214, 06037 (2019), [https://doi.org/10.1051/epjconf/201921406037].

[14] P. Billoir, “Progressive track recognition with a Kalman-like fitting procedure”, Comput. Phys. Com-
mun. 57 390-394 (1989) [https://doi.org/10.1016/0010-4655(89)90249-X].

[15] G Piacquadio et al, “Primary vertex reconstruction in the ATLAS experiment at LHC” J. Phys.: Conf.
Ser. 119 032033 (2008)

[16] Pedregosa, F. and Varoquaux, G. et al., “Scikit-learn: Machine Learning in Python”, Journal of Machine
Learning Research 12 2825-2830 (2011) [https://scikit-learn.org/].

[17] ATLAS Collaboration, “Technical Design Report for the ATLAS Inner Tracker Pixel Detector” CERN-
LHCC-2017-021, ATLAS-TDR-030 [https://cds.cern.ch/record/2285585].

[18] “Exploration of different parameter optimization algorithms within the context of ACTS sof tware
framework”, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-04/.

9

	Introduction
	Problem Summary
	Testing Framework
	Tracking Algorithms
	Optimization Algorithms Explored
	Performance Evaluation: Score/Objective Function
	Construction of Score Function for the CKF
	Construction of Score Function for the AMVF

	Integration of two frameworks

	Results
	CKF Optimization Results
	AMVF Optimization Results

	CKF optimization using the ATLAS ITk geometry within ACTS
	Conclusions

