

SEEIIST Open Steering committee, 04/04/2022

Experts' support for capacity building

Dr. Yannis PAPAPHILIPPOU

Accelerator and Beam Physics Group Leader Beams Department, CERN

Some history

Greece among the 12 founding member states of CERN (1954), with large particle physics community (216 users @ CERN experiments in 2020)
 Since last two decades, continuous effort to build a community in Accelerator Physics and technology for Greece.

Distribution of All CERN Users by Nationality on 27 January 2020

SEEIST steering Committee

12.3

Greek Students in Accelerator fields

- Several **technical** (MSc level) and **doctoral studentships** @ CERN, some partially supported by public grants (e.g. IKY), in beam physics, accelerator operation and technology. A **non-exhaustive list**
 - Michalis Zampetakis (Un. of Creta), 2018-2022, IBS and space-charge combined with cooling in hadron and lepton rings.
 - Kostas Paraschou (Un. of Thessaloniki), 2018-2022, Impact of incoherent e-cloud effects in LHC
 - Natalia Triantafyllou (Un. of Liverpool), 2018-2022, Emittance growth due to crab-cavity noise
 - Tirsi Prebibaj (Un. of Frankfurt), 2020 2023, Optics and resonance correction for high brightness beams
 - Dr. Sophia Kostoglou (National Technical University of Athens), 2017-2020, Noise effects and their impact on the performance of LHC and HL-LHC.
 - Dr. Kyriacos Skoufaris (**Un. of Creta**), 2016-2020 Symplectic integration schemes, beam-beam effects in LHC and HL-LHC.
 - Dr. Foteini Asvesta (National Technical University of Athens), 2015 2020, Space-charge effects in the LHC injectors.
 - Dr. Stephania Papadopoulou (University of Creta), Lattice design for low emittance rings, halo formation in highbrightness lepton and hadron beams.
 - Dr. Theodoros Argyropoulos (National Technical University of Athens), 2010 2014, Longitudinal dynamics of harmonic RF cavities
 - Dr. Eirini Koukovini Platia, (EPFL), 2011 2015, Coherent effects and instabilities in low emittance rings
 - Dr. Fanouria Antoniou (National Technical University of Athens), 2009 2015, Intrabeam Scattering dominated ultra-low emittance rings
- Most of them continued as post-doctoral fellows at CERN and elsewhere
- Five hired as staff applied physicists at CERN

Accelerator studies and projects

5

- CERN injector operation and LHC injector upgrade (LIU)
- LHC design and operation
- High-luminosity LHC
- Compact Linear Collider (CTF3)
- Low Emittance Rings (Synchrotron Light Sources,...)
- Future Circular Collider
- Muon Collider

Brightness studies in the PS Booster

Optimization of the beam brightness for low energy machines (PSB).

 $B = \frac{N_b}{0.5(\epsilon_x + \epsilon_y)}$

- Particles **oscillate** around the accelerator (machine optics).
- Errors in the magnetic fields can enhance these oscillations → beam losses.
- Goal is to bring oscillations back to acceptable levels (optics correction).

- The shape of the particle distributions is important for the emittances.
- Many factors degrade the particle profiles (beam tails) → emittance growth.
- Goal is to optimize and accurately reconstruct the beam profiles.

Mitigation of the effects caused by the self-interaction of the charged particles of the beam (space charge effects)

Beam intensity (number of particles per bunch)

Beam transverse emittances (particle density in the phase space)

- Space charge effects can lead to many undesired effects (tune spread, resonance excitation, etc.).
- Combined with errors in the magnetic field errors can greatly limit the brightness (emittance growth and beam losses).

SEEIST steering Committee

PhD of T. Prebibaj

04.04.2022

LHC & HL-LHC noise

studies

03:50

10

f (kHz)

7

CHALLENGE: chasing the source of the 10⁻³ σ beam oscillations and its impact on beam lifetime.

- 50 Hz harmonics on transverse beam spectrum.
- Harmonics of Beam 1 x2 larger amplitudes than Beam 2.

Perturbation source 600 Hz, Injectior B1H B2H Power FFTI (arb.units) converters of main dipoles: tests with \$78 OFF \$67 ON active filters Active filters \$67 OFF \$56 ON \$45 OFF \$45 ON \$45 OFF \$34 ON 03:38 03:44 UTC time (hh:mm) 10° **UPS** voltage measurements, () Aoltage () 10⁻¹ 10^{-1} additional studies in Run 3 10^{-1} 2

Single-particle tracking simulations: **22h** beam lifetime for Beam 1 and **27h** for Beam 2

PhD of S. Kostoglou

e-cloud at LHC and HL-LHC: incoherent effects

- LHC data shows slow beam degradation due to e-cloud at injection and collisions
- Develop simulation framework for e-cloud effect over the required long timescales (10M turns), including
 - Theoretical framework

PhD of K. Paraschou

- Tracking code
- Software infrastructure to simulate and condition the electron pinches and setup the simulation from the MAD-X description of the machine
- Presently capable of simulating 10 M turns (15 minutes of beam time) by exploiting computational power of GPUs

HL-LHC beam-beam wire compensation

CHALLENGE: Predict and optimize the future (HL-LHC) by

- taking into account Machine Protection constraints and
- minimizing complexity, saving commissioning time and maximize machine availability.

PhD of K. Skoufaris

Collaboration agreements with Greek institutions for Accelerators

- Collaboration agreements signed for broad range of subjects of accelerator physics and technology
 - National Technical University of Athens
 - University of Creta
 - Aristotelian University of Thessaloniki

National Technical University of Athens

SEEIST steering Committee

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

Areas of accelerator expertise

- Accelerator and beam physics
- Accelerator operation
- Experimental areas secondary beam lines
- Radio-Frequency systems design, including LLRF
- Accelerator controls
- Beam instrumentation and diagnostics
- Magnet design
- Cryogenics
- Power convertors and electronics

Electrical Power convertors

Electrical power converters group

https://videos.cern.ch/record/2688929

Precision of a power converter It is equivalent to scoring an Ace (golf ball entering a hole with a single hit) from 20km far Electronic devices that **control the parameters of electrical current** (amplitude, frequency) to perform reproducible experiments

- At CERN the **precision** that is expected is in the order of 1 part per million.
 - Approximately **5000 power converters** from 1kW to 60MW are operated across the complex

K. Papastergiou

Secondary beam lines for fixed target experiments

Fixed target experiments with secondary beams, e.g. NA48/COMPASS, NA61/SHINE, NA62, NA64, NA65

N. Charitonidis

part of ATLAS detector waiting for beam in H8 Hadron + Electron beams, all Energies from 50 – 300 GeV

LHCb telescopes being tested in H8

180 GeV positive hadrons

CALICE calorimeter @ H2

Education in Accelerator Physics and technology

- Undergraduate courses on Accelerators
 - NTUA, AUTH, UoC
- MSc course in Accelerators @ AUTH (since 2020)
- Intermediate CERN Accelerator
 School (CAS) in Chios (2011)
- Advanced CAS in Thessaloniki (2018)
- Several students attended
 specialised accelerator schools
 (USPAS, LC school, JUAS)

Summary

- Over last ~20 years critical mass of Greek accelerators scientists has been developed with a large spectrum of expertise in beam physics, accelerator design and technology
 - Forms **solid base** which could be further enhanced with **targeted studies** in order to support design and operation of an **accelerator** for **Hadron Cancer Therapy** and Biomedical Research with Protons and Heavy lons