

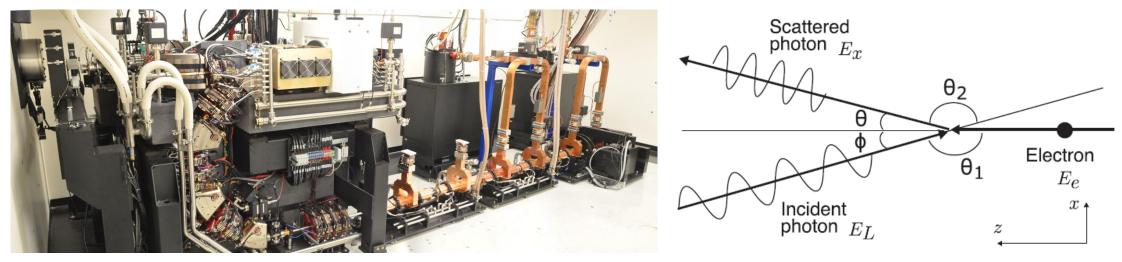
1

Optimisation of a Fabry-Pérot cavity and Final Focus for CERN ICS

Vlad Muşat

Supervisor: Andrea Latina

CLIC beam dynamics meeting – 16/12/2021


Contents

- I. Introduction
- II. Tolerance studies
- III. Optimisation of Fabry-Perot cavity operated in burst mode
- IV. Design of small final focus
- V. Conclusions

Inverse Compton Scattering (ICS)

ICS = Scattering of a low energy photon from a relativistic electron resulting in a high energy x-ray

- ICS first described by Feenberg and Primakoff in 1948 [1].
- Several existing ICS sources: ThomX (France), TTX (China), MuCLS (Germany), etc.
- Applications include cancer therapy [2], X-ray imaging [3], cultural heritage [4], protein crystallography [5] and nuclear waste management [6].

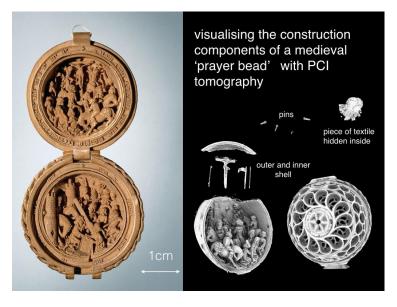
Feenberg, E., & Primakoff, H. (March 01, 1948). Interaction of Cosmic-Ray Primaries with Sunlight and Starlight. Physical Review, 73, 5, 449-469.
 Montay-Gruel, P., et al. (December 01, 2018). X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiotherapy and Oncology,

129, 3, 582-588.

[3] Gradl, R., et al. (2017). Propagation-based Phase-Contrast X-ray Imaging at a Compact Light Source. (Scientific reports.)

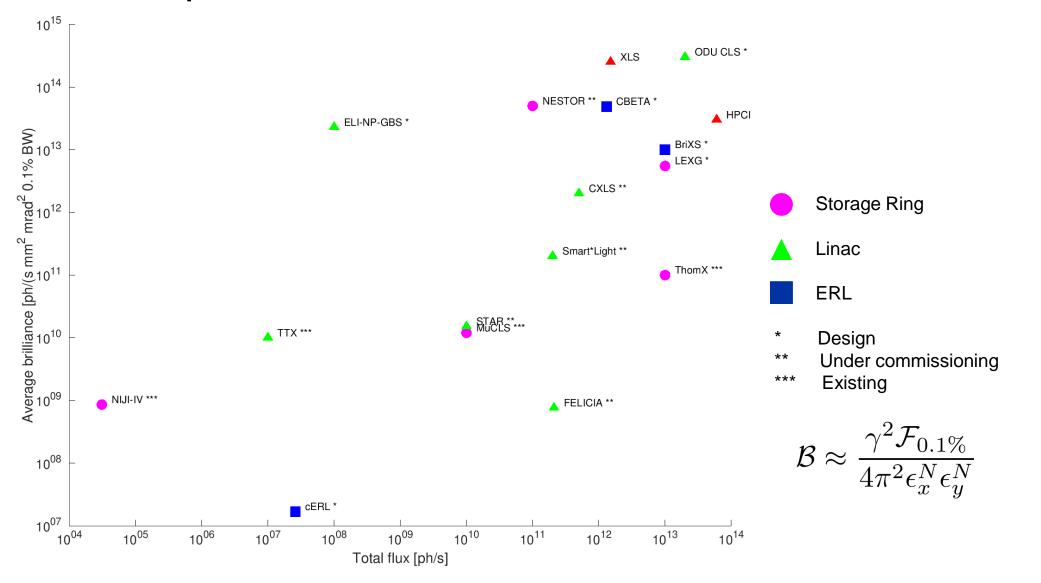
[4] Walter, P., et al. (September 01, 2009). A new high quality X-ray source for Cultural Heritage. Comptes Rendus - Physique, 10, 7, 676-690.

[5] McCormick, et al. (January 01, 2010). X-ray structure determination of the glycine cleavage system protein H of Mycobacterium tuberculosis using an inverse Compton synchrotron X-ray source. Journal of Structural and Functional Genomics, 11, 1, 91-100

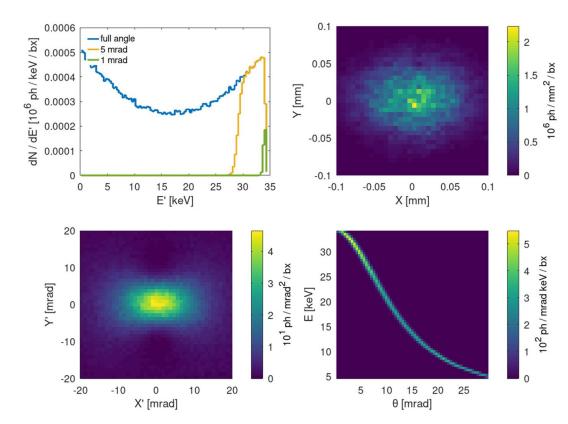

[6] Hajima, R., et al. (May 01, 2008). Proposal of Nondestructive Radionuclide Assay Using a High-Flux Gamma-Ray Source and Nuclear Resonance Fluorescence. Journal of Nuclear Science and Technology, 45, 5, 441-451.

Potential applications

- Many applications were a result of previous studies at synchrotrons. ICS sources offer a more compact and accessible method to conduct such experiments, and there is hope that in the near future such devices will also be implemented in hospitals or laboratories.
- The main challenge currently is achieving high intensity and high energy x-rays, similar to the ones in synchrotron sources.
- Tomographies in particular have already been extensively studied.


Name	$E_{\rm Xray}$ [keV]	${\cal F}_{ m [ph/s]}$	BW [%]	$\sigma_{\rm Xray} ({\rm at \ IP})$ [μ m]	$\sigma_{\rm Xray}$ (at sample) [mm]	Θ [mrad]
K-edge subtraction	33.7	3×10^{10}	4.5	6	16	4
Phase contrast imaging	25	2.4×10^9	4	39×45	16	4
Microbeam radiation therapy	25	10^{13}	3.6	70	4	1.5
FLASH therapy	6.000 - 10.000	10^{14}	-	50	17	-
Protein crystallography	7 - 35	10^{13}	1.4	30	30	2
XRF	6.5 - 92	3×10^{10}	1 - 3	20	20×10^{-3}	-
Nuclear waste management	1.000 - 5.000	2.2×10^{13}	0.2	35	-	-

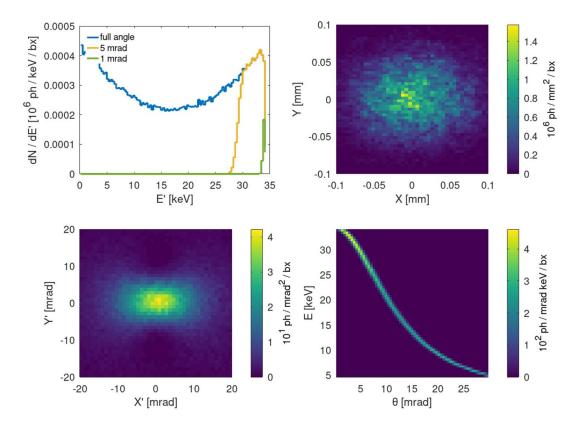
Ref: Kulpe, S., Dierolf, M., et al (December 10, 2018). K-edge subtraction imaging for coronary angiography with a compact synchrotron X-ray source. *Plos One, 13,* 12.)



Ref: Reischig, P., et al (March 09, 2009). A note on medieval microfabrication: The visualization of a prayer nut by synchrotron-based computer X-ray tomography. *Journal of Synchrotron Radiation*, *16*, 2, 310-313.

Landscape of ICS sources

RF-Track: Code benchmark

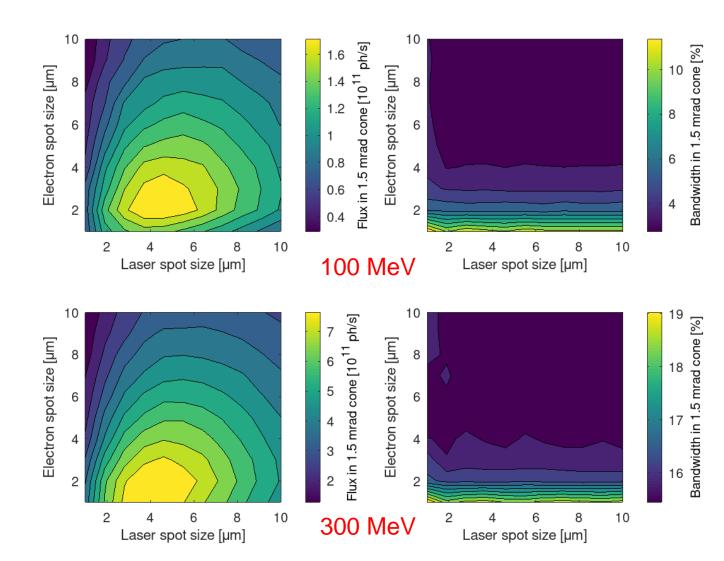

BriXSino: RF-Track

- RF-Track, developed by Andrea Latina [1], was used to simulate ICS sources at the laser and electron beam interaction point (IP).
- Pictured are RF-Track and CAIN simulation results for BriXSino.
- RF-track achieved a much shorter runtime than CAIN.

Parameter	Unit	CAIN	RF-Track	Analytic
Nb. of simulated electrons		10^{4}	10^{4}	-
Nb. of generated photons Runtime Total flux per shot Brilliance	S	158149 3276 9884 1691	$129839 \\ 0.67 \\ 11286 \\ 1892$	- 0.05 11361 1879

Acknowledgements Alessandro Variola Iryna Chaikovska Illya Drebot

CAIN: Code benchmark

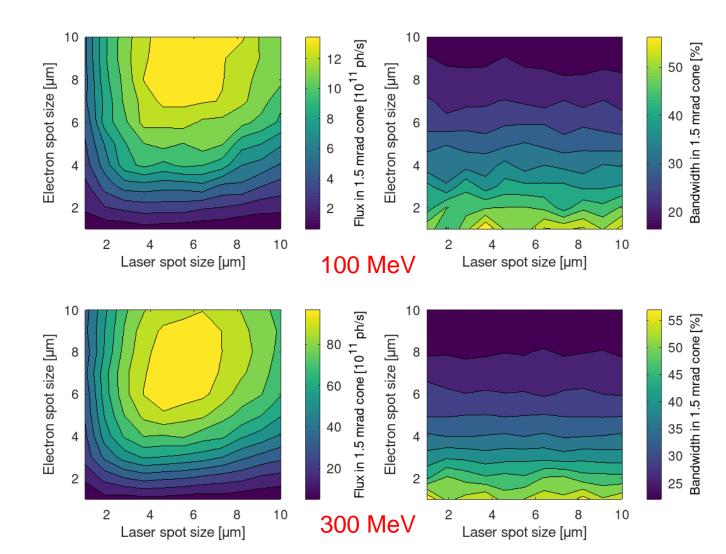

BriXSino: CAIN

- RF-Track, developed by Andrea Latina [1], was used to simulate ICS sources at the laser and electron beam interaction point (IP).
- Pictured are RF-Track and CAIN simulation results for BriXSino.
- RF-track achieved a much shorter runtime than CAIN.

Parameter	Unit	CAIN	RF-Track	Analytic
Nb. of simulated electrons		10^{4}	10^{4}	-
Nb. of generated photons Runtime Total flux per shot Brilliance	S	158149 3276 9884 1691	$129839 \\ 0.67 \\ 11286 \\ 1892$	- 0.05 11361 1879

Acknowledgements Alessandro Variola Iryna Chaikovska Illya Drebot

XLS: Spot size scans (1.5 mrad cone)



 $\epsilon^N = 0.3 \text{ mm mrad}$ U = 50 mJ

- Dira 1000 laser was used, along with HPCI electron gun
- Applications typically use flux in a 1-2 mrad cone
- Can reduce bandwidth using X-ray monochromators at the expense of flux
- Values for table given for maximum flux

XLS parameter	Unit	$100 { m MeV}$	$300 { m MeV}$
Electron spot size Laser spot size	µm µm	$1-4 \\ 3-6$	0.5 - 3 3 - 6
Flux in 1.5 mrad cone BW in 1.5 mrad cone	$\begin{array}{c} 10^{11} \mathrm{ph/s} \\ \% \end{array}$	$1.6 \\ 4-8$	$7.0 \\ 16-19$

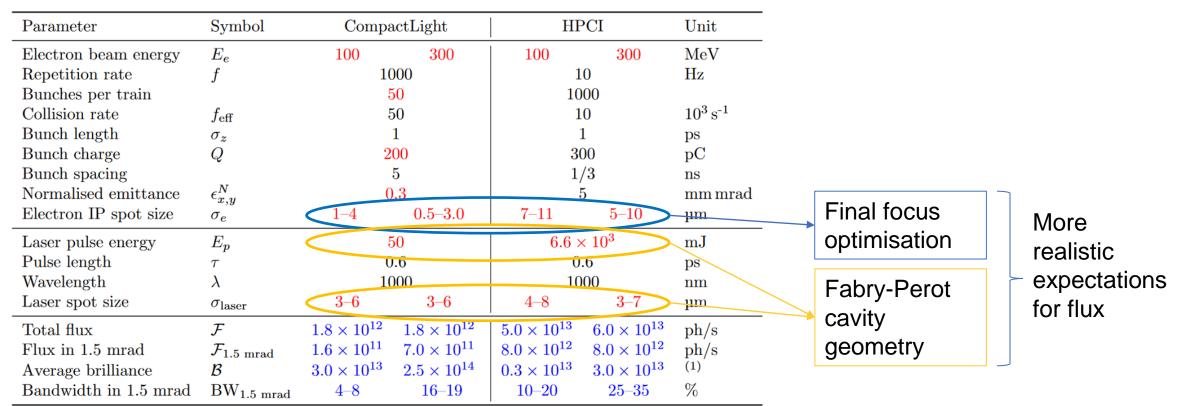
HPCI: Spot size scans (1.5 mrad cone)

 $\epsilon^N = 5 \text{ mm mrad}$ U = 6600 mJ

- Dira 1000 laser was used, along with HPCI electron gun
- Applications typically use flux in a 1-2 mrad cone
- Can reduce bandwidth using X-ray monochromators at the expense of flux
- Values for table given for maximum flux

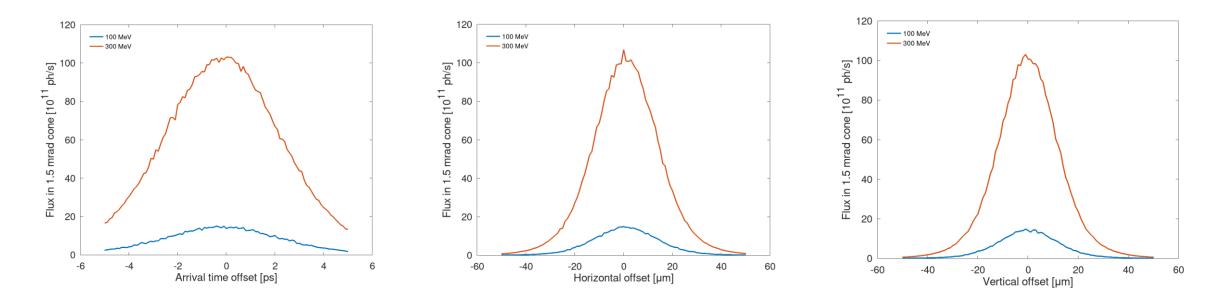
HPCI parameter	Unit	$100 {\rm ~MeV}$	$300 {\rm ~MeV}$
Electron spot size Laser spot size	µm µm	$7-11 \\ 4-8$	$5-10 \\ 3-7$
Flux in 1.5 mrad cone BW in 1.5 mrad cone	$10^{11} \mathrm{ph/s}$ %	12 10–20	80 25–35

Preliminary parameters

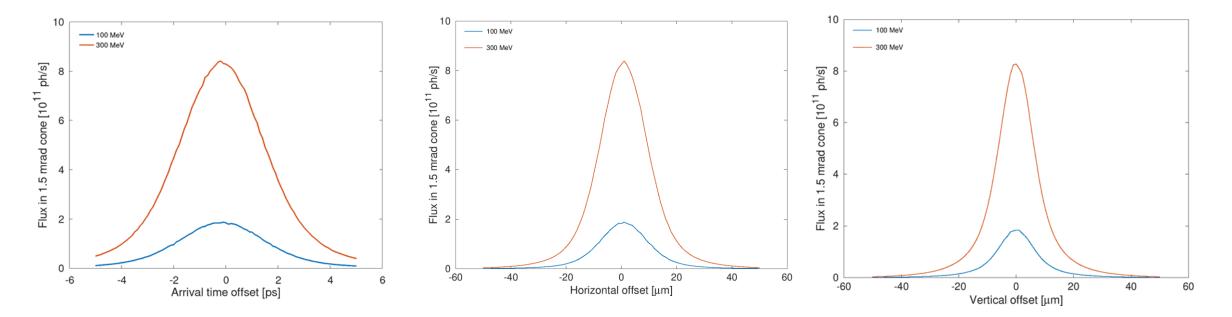

Parameter	Symbol	Compa	actLight	HI	PCI	Unit	
Electron beam energy	E_e	100	300	100	300	MeV	
Repetition rate	f	10	000	1	Hz		
Bunches per train	-	Ę	50	10	000		
Collision rate	$f_{ m eff}$	Ę	50	1	.0	$10^3 { m s}^{-1}$	
Bunch length	σ_z		1		1	\mathbf{ps}	
Bunch charge	Q	2	00	3	00	\mathbf{pC}	
Bunch spacing			5	1	1/3		
Normalised emittance	$\epsilon^N_{x,y}$	0).3		mmmrad		
Electron IP spot size	σ_e	1 - 4	0.5 – 3.0	7–11	5 - 10	μm	
Laser pulse energy	E_p	Ę	50	6.6 >	$< 10^{3}$	mJ	
Pulse length	au	0).6	0	.6	\mathbf{ps}	
Wavelength	λ	1(000	10	000	$\mathbf{n}\mathbf{m}$	
Laser spot size	$\sigma_{ m laser}$	3–6	3–6	4-8	3 - 7	μm	
Total flux	\mathcal{F}	1.8×10^{12}	$1.8 imes 10^{12}$	5.0×10^{13}	$6.0 imes10^{13}$	$\rm ph/s$	
Flux in 1.5 mrad	$\mathcal{F}_{1.5 \mathrm{mrad}}$	$1.6 imes10^{11}$	$7.0 imes10^{11}$	8.0×10^{12}	$8.0 imes10^{12}$	$\rm ph/s$	
Average brilliance	\mathcal{B}	$3.0 imes 10^{13}$	$2.5 imes 10^{14}$	0.3×10^{13}	$3.0 imes 10^{13}$	(1)	
Bandwidth in 1.5 mrad	$\mathrm{BW}_{1.5~\mathrm{mrad}}$	4 - 8	16 - 19	10-20	25 - 35	%	

 $^{(1)}$ ph/(s mm² mrad² 0.1%BW)

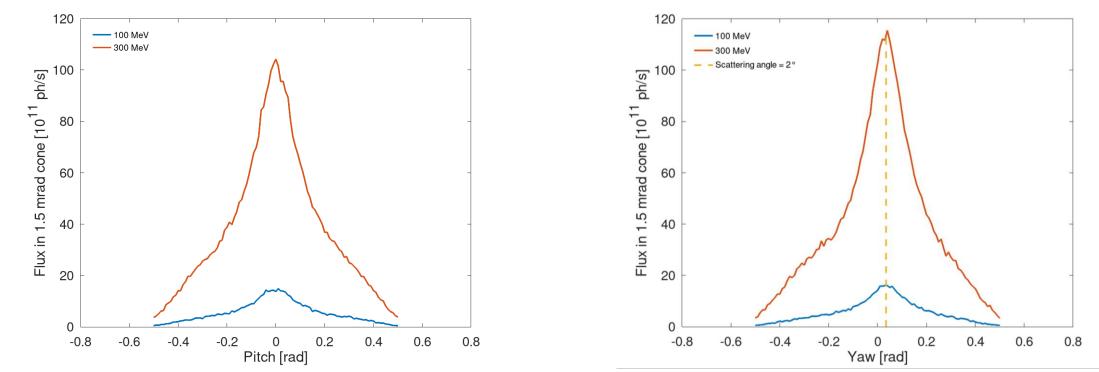
- Optimal electron and laser parameters were derived for flux maximization
- Novel ICS sources would benefit from injectors developed at CompactLight and HPCI


Preliminary parameters

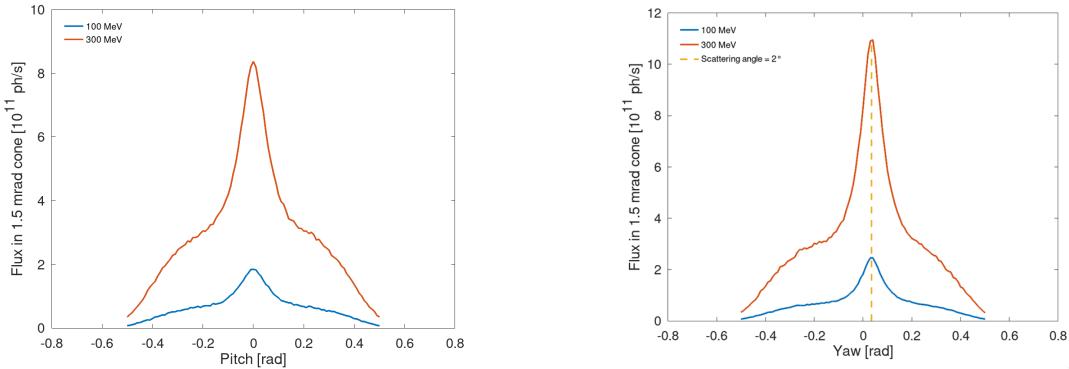
 $^{(1)}$ ph/(s mm² mrad² 0.1%BW)


HPCI: laser beam offset

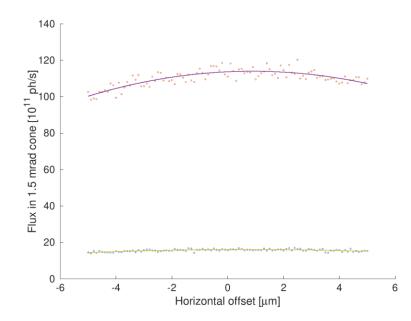
- Investigated the change of flux in a 1.5 mrad cone given an offset of the laser in transverse (x, y) or longitudinal directions.
- Values shown for ideal IP parameters


XLS: laser beam offset

- Investigated the change of flux in a 1.5 mrad cone given an offset of the laser in transverse (x, y) or longitudinal directions.
- Values shown for ideal IP parameters


HPCI: laser beam angle offset

- Investigated the change in flux in 1.5 mrad cone given an offset of the laser in pitch (around x-axis) or yaw (around y-axis).
- Asymmetry of yaw plot due to 2° crossing angle.
- Yaw plot has peak larger than other offset plots, since for a misalignment equal to the crossing angle the beams will collide headon instead and generate the maximum flux.
- Values shown for ideal IP parameters


XLS: laser beam angle offset

- Investigated the change in flux in 1.5 mrad cone given an offset of the laser in pitch (around x-axis) or yaw (around y-axis).
- Asymmetry of yaw plot due to 2° crossing angle.
- Yaw plot has peak larger than other offset plots, since for a misalignment equal to the crossing angle the beams will collide headon instead and generate the maximum flux.
- Values shown for ideal IP parameters

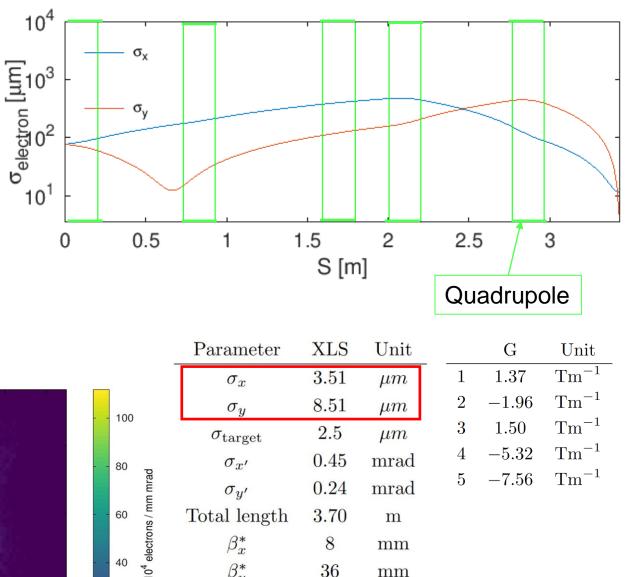
Summary table of offset ranges

- Offset value ranges were computed given a 5% difference to the non-offset flux in 1.5 mrad cone.
- Acceptable offsets range from 1 to 5 μm and 18 to 30 mrad.

	XLS					HPCI							
Offset	1	$100 { m MeV}$			$00 \mathrm{MeV}$		100 MeV 300 N			$00 \mathrm{MeV}$		Unit	
	Min	Max	Error	Min	Max	Error	Min	Max	Error	Min	Max	Error	
Horizontal	-1.91	2.01	0.10	-1.83	2.06	0.05	-3.06	4.29	0.14	-3.09	4.30	0.09	μm
Vertical	-2.08	2.09	0.02	-2.03	2.06	0.01	-3.51	3.52	0.15	-3.51	3.53	0.05	μm
Arrival time	-0.72	0.40	0.01	-0.71	0.40	0.01	-0.95	0.69	0.02	-0.97	0.61	0.01	\mathbf{ps}
Pitch	-18.59	18.49	0.14	-18.44	18.34	0.38	-26.98	27.22	$1,\!37$	-26.73	26.49	0.38	mrad
Yaw	-3.58	73.90	0.07	-3.50	73.76	0.09	-7.29	78.29	0.06	-7.49	76.54	0.17	mrad

• Error was calculated as the error on the average of estimates from 3 runs.

XLS: Small final focus design


- To determine realistic values for the electron spot size at the IP, an ٠ optimisation of the final focus was considered.
- The simplex method for optimisation was used ٠

$$M = 100 \times (\sigma_{x,y} / \sigma_{\text{target}} - 1)^2 + \sigma_{x',y'}^2 + 50 \times (\sum \sigma_{\text{Qi}})^2$$

- Free parameters: ٠
 - Number of Quadrupoles 1.
 - Quadrupole strength 2.
 - Distance between Quadrupoles ($L_{\text{Ouadrupole}} = 0.2 \text{ m}$) 3.
 - $\beta_{x,y}$ at final focus entrance $\alpha_{x,y}$ at final focus entrance 4.
 - 5.

X [mm]

100 0.5 1 80 10⁶ electrons / mm mrad X' [mrad] o Y' [mrad] 0 60 40 -0.5 -1 20 -1 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 -0.02 0 0.02 0.04 -0.04

36

0.3

 $\mathbf{m}\mathbf{m}$

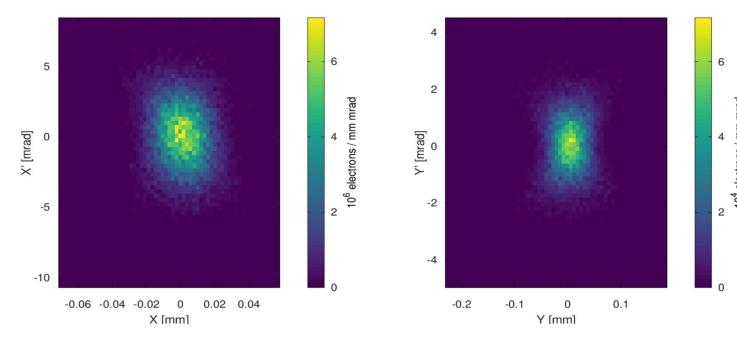
m

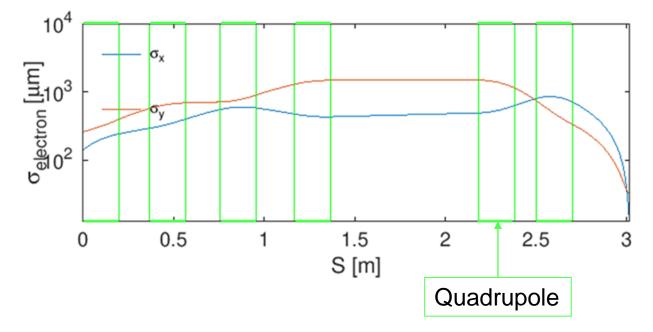
40

20

Y [mm]

 β_y^*

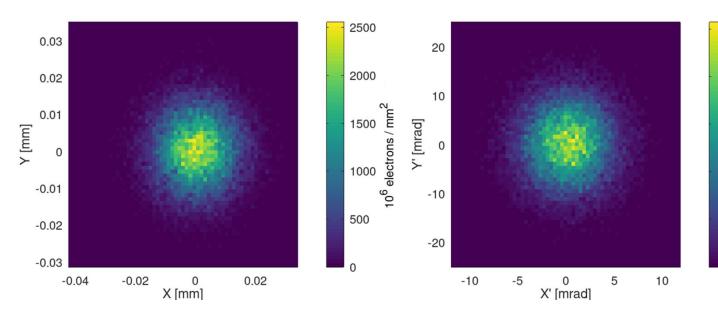

 L^*

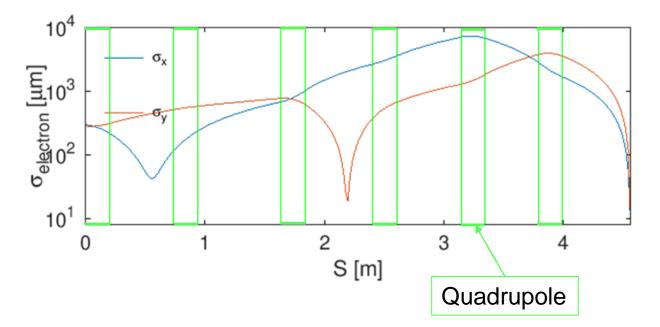

HPCI: Small final focus design

- To determine realistic values for the electron spot size at the IP, an ٠ optimisation of the final focus was considered.
- The simplex method for optimisation was used ٠

$$M = 100 \times (\sigma_{x,y}/\sigma_{\text{target}} - 1)^2 + \sigma_{x',y'}^2 + 50 \times (\sum \sigma_{\text{Qi}})^2$$

- Free parameters: ٠
 - Number of Quadrupoles 1.
 - 2.
 - Quadrupole strength Distance between Quadrupoles ($L_{Quadrupole} = 0.2 \text{ m}$) 3.
 - $\beta_{x,y}$ at final focus entrance $\alpha_{x,y}$ at final focus entrance 4.
 - 5.


	Parameter	HPCI	Unit		G	Unit
	σ_x	12.85	μm	1	-3.38	Tm^{-1}
	σ_y	33.57	μm	2	2.37	Tm^{-1}
6	$\sigma_{ m target}$	8.00	μm	3	-3.70	Tm^{-1}
q	$\sigma_{x'}$	2.27	mrad	4	2.17	Tm^{-1}
n mra	$\sigma_{y'}$	1.07	mrad	5	4.02	Tm^{-1}
4 10 ⁴ electrons / mm mrad	Total length	3.02	m	6	-7.44	Tm^{-1}
ectror	eta_x^*	5.7	$\mathbf{m}\mathbf{m}$			
10 ⁴ el	eta_y^*	31.5	$\mathbf{m}\mathbf{m}$			
2	L^*	0.3	m			


HPCI: Small final focus design No energy spread

- To determine realistic values for the electron spot size at the IP, an ٠ optimisation of the final focus was considered.
- The simplex method for optimisation was used ٠

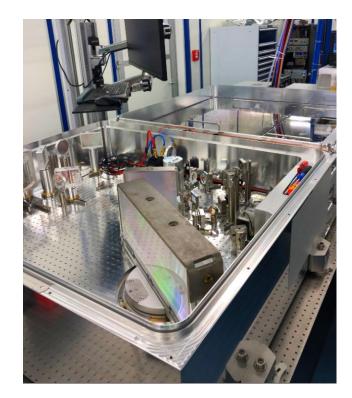
$$M = 100 \times (\sigma_{x,y}/\sigma_{\text{target}} - 1)^2 + \sigma_{x',y'}^2 + 50 \times (\sum \sigma_{\text{Qi}})^2$$

- Free parameters: ٠
 - Number of Quadrupoles 1.
 - 2.
 - Quadrupole strength Distance between Quadrupoles ($L_{Quadrupole} = 0.2 \text{ m}$) 3.
 - 4.
 - $\beta_{x,y}$ at final focus entrance $\alpha_{x,y}$ at final focus entrance 5.

	Parameter	HPCI	Unit			G	Unit
-	σ_x	8.70	μm	- K	1	-2.76	Tm^{-1}
0.01	σ_y	7.96	μm		2	0.33	Tm^{-1}
0.008	$\sigma_{ m target}$	8.00	μm		3	4.64	Tm^{-1}
	$\sigma_{x'}$	2.91	mrad		4	1.91	Tm^{-1}
mrad ⁻²	$\sigma_{y'}$	6.19	mrad		5	-3.55	Tm^{-1}
	Total length	4.56	m		6	4.60	Tm^{-1}
10 ⁴ electrons /	eta_x^*	3.00	$\mathbf{m}\mathbf{m}$				
0 ⁴ el	eta_y^*	2.48	$\mathbf{m}\mathbf{m}$				
0.002	L^*	0.57	m				

Laser: Preliminary considerations

- A laser similar to TRUMPF's 1 kW Dira 1000 was considered [1].
 XLS
 - 1 kW and f = 1 kHz \rightarrow 1 J/pulse, 50 bunches/pulse $\rightarrow E_p = 20$ mJ
 - Bunch spacing = 5 ns \rightarrow 200 MHz enhancement cavity

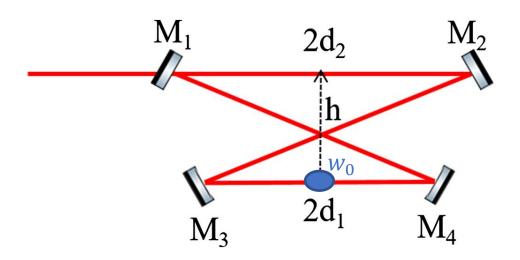

HPCI

- 1 kW and $f = 10 \text{ Hz} \rightarrow 100 \text{ J/pulse}$, 1,000 bunches/pulse $\rightarrow E_p = 100 \text{ mJ}$
- Bunch spacing = 1/3 ns $\rightarrow 3$ GHz enhancement cavity

Enhancement cavities could be used

- In CW for XLS, given a bunch spacing of 5 ns $\rightarrow E_p = 50 \text{ mJ}$
- In burst mode for HPCI, given a bunch spacing of 1/3 ns $\rightarrow E_p = 6.6$ J

Parameter	Quantity	Units
Laser power	1000	W
Pulse length, τ	0.6	\mathbf{ps}
Wavelength, λ	1000	nm


Acknowledgements Eduardo Granados

HPCI benefits from Fabry-Perot cavities operated in burst mode

[1] T. Metzger (November 6 2019), Ultrafast Thin-Disk Amplifiers, Talk S55.

Fabry-Pérot resonator

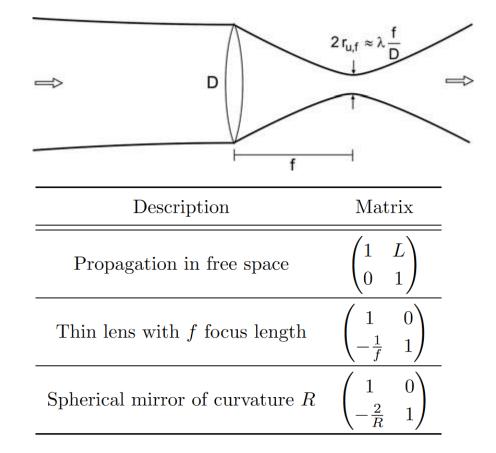
- Fabry-Pérot cavities can greatly increase the available laser pulse energy, which linearly depends on the ICS photon flux.
- **Burst mode operation** prevents mirror coating thermal load by reducing the lower average power inside the cavity.
- The input laser beam repetition rate is matched by the cavity roundtrip length. A subharmonic of the repetition rate can also be considered.
- A burst mode Fabry-Pérot cavity was optimised for the HPCI-based ICS source. XLS required a low laser repetition rate → more suitable for a Fabry-Perot cavity operated in continuous mode
- The crossing angle α , was chosen to avoid collision of the electron beam with M3/M4. The laser pulse energy was set in correspondence with the maximum fluence \mathcal{F} .

Acknowledgements Aurélien Martens

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 121601 (2018)

Optimization of a Fabry-Perot cavity operated in burst mode for Compton scattering experiments

Pierre Favier, Loïc Amoudry, Kevin Cassou, Ronic Chiche, Kevin Dupraz, Aurélien Martens,^{**} Daniele Nutarelli, Viktor Soskov, and Fabian Zomer LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91898 Orsay, France

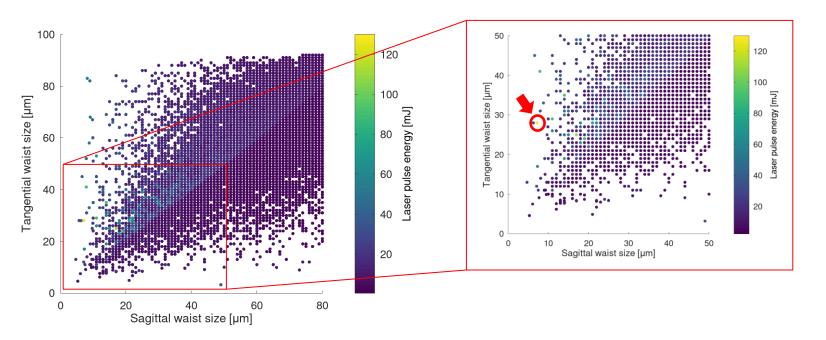

Antoine Courjaud Amplitude Systèmes, 11, Avenue de Canteranne, Cité de la Photonique, 33600 Pessac, France

> Luca Serafini INFN-MI, Via Celoria 16, 20133 Milano, Italy

Free parameter	Symbol	Constrain
Spherical mirrors spacing	d_1	
Planar mirrors spacing	d_2	$[0, L_{\rm RT}/4]$
Cavity height	h	$[0, L_{\mathrm{RT}}/4]$
Radius of curvature	R	
Mirror diameter	Φ	$h - \Phi > h d_1 - d_2 /(d_1 + d_2)$ $d_1 \tan \alpha > \Phi/2$
Roundtrip length	L_{RT}	$n \times c/(2f_{\mathrm{rep}}), n \in \mathbb{Z}$
Laser pulse energy	U	$U < \mathcal{F}_{\max} \pi w_s w_t / 2$
Cavity stability		$\begin{array}{c} Tr(M_t) < 2\\ Tr(M_s) < 2 \end{array}$

ABCD matrices

- To compute the laser beam size across the Fabry-Pérot cavity, ray tracing calculations were done using ABCD matrix formalism.
- ABCD matrices allow for a fast method to derive parameters describing Gaussian beams (lasers or electrons).
- The final ABCD matrix, corresponding to either the sagittal (M_s) or tangential (M_t) waist size, was also used to derive **stability conditions** (Tr(M) < 2)



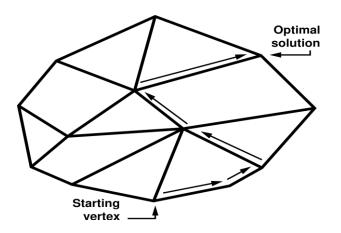
Familiar?

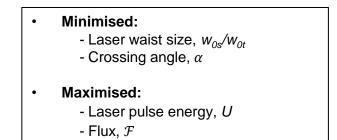
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & d_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2/(R \times \cos(\theta)) & 1 \end{pmatrix} \begin{pmatrix} 1 & l_{cross} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2d_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & l_{cross} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & l_{cross} \\ -2/(R \times \cos(\theta)) & 1 \end{pmatrix} \begin{pmatrix} 1 & d_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & l_{cross} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & l_{cross} \\ 0 & 1 \end{pmatrix} \begin{pmatrix}$$

STAR: Monte Carlo optimisation

- Marten's paper implemented a Monte Carlo-based optimisation of the Fabry-Pérot cavity geometry.
 → results from paper were reproduced (*).
- Monte Carlo optimisation provided many possible cavity geometries → choose set-up with largest flux.
- However, Monte Carlo methods do not guarantee that the solution for the largest flux is found.

(*)	Method	$L_{\rm RT}$ [m]	$2d_1 \ [\mathrm{cm}]$	$2d_2 [\mathrm{cm}]$	$h [\mathrm{cm}]$	α [degree]	R [cm]	Φ [cm]	$U_{\rm max} [{ m mJ}]$	$w_{0\mathrm{s}}/w_{0\mathrm{t}}~[\mathrm{\mu m}/\mathrm{\mu m}]$	${\cal F}~[{\rm ph/s}]$
	Monte Carlo	1.2	24.4	35.5	1.66	4.1	24.4	1.35	130	14/26	6.9×10^{11}
	Monte Carlo	0.3	6.6	8.31	0.77	6.0	6.6	0.587	22	9/19	$3.6 imes 10^{11}$

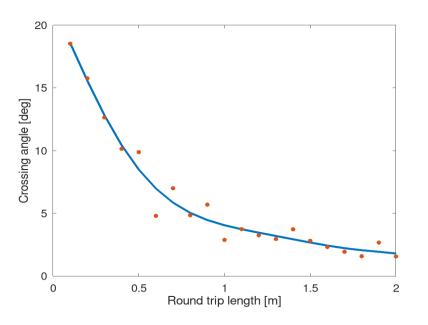

STAR: Simplex optimisation


- The simplex algorithm is a fast method to arrive at a minimum of a merit function. In comparison with Monte Carlo, the script runtime was greatly reduced, and a definite maximum was reached for the photon flux.
- Bias was avoided for the merit function; weights were chosen to prioritize parameter constraints and allow for sensible solutions.
- Practical constraints were set for the laser pulse energy and waist sizes:

-5 mJ < U < 150 mJ

- $\sigma_{\text{electron}} < w_0 \ll \Phi$

$M = -U^2 + 100 \times \{(w_{0s} < 30)^2 + (w_{0t} < 30)^2 + (w_{0s} > 5)^2 + (w_{0t} > 5)^2 + ($
+ $(\operatorname{Tr}(M_t) < 2)^2$ + $(\operatorname{Tr}(M_s) < 2)^2$ + $(U < 140)^2$
$+ (h - \Phi > h d_1 - d_2 /(d_1 + d_2))^2\}$



Method	$L_{\rm RT}$ [m]	$2d_1$ [cm]	$2d_2$ [cm]	$h [\mathrm{cm}]$	α [degree]	R [cm]	Φ [cm]	$U_{\rm max} [{\rm mJ}]$	$w_{0\mathrm{s}}/w_{0\mathrm{t}}~[\mu\mathrm{m}/\mu\mathrm{m}]$	${\cal F}~[{\rm ph/s}]$
Monte Carlo Simplex	$\begin{array}{c} 1.2 \\ 1.2 \end{array}$	$\begin{array}{c} 24.4\\ 24.6\end{array}$	$35.5 \\ 35.3$	$1.66 \\ 1.23$	$4.1 \\ 2.1$	$\begin{array}{c} 24.4\\ 24.6\end{array}$	1.35 0.80	$\frac{130}{140}$	$14/26 \\ 16/23$	$\begin{array}{c} 6.9 \times 10^{11} \\ 1.1 \times 10^{12} \end{array}$
Monte Carlo Simplex	$\begin{array}{c} 0.3 \\ 0.3 \end{array}$	$6.6 \\ 6.32$	$\begin{array}{c} 8.31\\ 8.65\end{array}$	0.77 0.59	6.0 4.8	6.6 6.3	0.587 0.500	22 22	9/19 9/16	$\begin{array}{c} 3.6 \times 10^{11} \\ 3.9 \times 10^{11} \end{array}$

Cavity geometry optimisation

- For HPCI, chose $L_{RT} = 1.5$ m to minimize the crossing angle and maximise the flux.
- $L_{RT} = 1.5$ m corresponds to a subharmonic of the laser repetition rate.
- Both Monte Carlo and simplex methods were used for cavity optimization.
- XLS' 200 MHz cavity repetition rate was not suitable for burst mode operation → NO cavity optimization

Parameter	Symbol	HPCI	Unit
Electron beam energy	E_e	100 300	MeV
Collision rate	$f_{ m eff}$	10	$10^3 {\rm s}^{-1}$
Bunch length	σ_z	1	\mathbf{ps}
Bunch charge	Q	300	pC
Bunch spacing		1/3	ns

Energy [MeV]	Optimisation method	$L_{ m RT}$ [m] $2d_1$	$2d_1$ [cm]	$2d_2$ [cm]	h [cm]	α [degree]	R [cm]	Φ [cm]	$U_{ m max} ~[{ m mJ}]$	$w_{0\mathrm{s}}/w_{0\mathrm{t}}~[\mu\mathrm{m}/\mu\mathrm{m}]$	Flux [ph/s]	
Energy [me]			Lui [em]	202 [cm]							ideal IP	post-FFS
100 100	Monte Carlo Simplex	$\frac{1.5}{1.5}$	$14.157 \\ 15.33$	$\begin{array}{c} 60.6 \\ 51.13 \end{array}$	$\begin{array}{r} 3.7\\ 25.30\end{array}$	$2.86 \\ 3.33$	$\begin{array}{c} 14.14\\ 14.53\end{array}$	$0.635 \\ 0.685$	$\begin{array}{c} 144.83 \\ 140 \end{array}$	5.88/19.66 8.54/6.30	$\begin{array}{c} 5.76 \times 10^{13} \\ 1.09 \times 10^{14} \end{array}$	$\begin{array}{c} 1.70 \times 10^{13} \\ 3.21 \times 10^{13} \end{array}$
300 300	Monte Carlo Simplex	$\frac{1.5}{1.5}$	$\begin{array}{c} 15.8\\ 14.42\end{array}$	$59.1 \\ 52.62$	$\begin{array}{r} 2.16\\ 24.44\end{array}$	$\begin{array}{c} 2.4 \\ 4.06 \end{array}$	15.79 13.70	$\begin{array}{c} 0.635\\ 0.786\end{array}$	$\frac{136.02}{140}$	9.16/16.84 10.0/4.86	$\begin{array}{c} 5.71 \times 10^{13} \\ 1.05 \times 10^{14} \end{array}$	$\begin{array}{c} 1.73{\times}10^{13} \\ 3.18{\times}10^{13} \end{array}$

HPCI: Post final focus and Fabry-Perot cavity optimisation parameters

Parameter	Symbol	HI	Unit	
Electron beam energy	E_e	100	300	MeV
Electron IP spot size	σ_{e}	$7 extstyle -11 \\ 12.9 \end{bmatrix}$	5–10 / 33.6	μm
Laser pulse energy	E_p	$\begin{array}{c} 6.6\times10^{3}\\ 13\times10^{3} \end{array}$		mJ
Laser spot size	$\sigma_{ m laser}$	$4-8 \\ 8.5/6.3$	3-7 10.0/4.9	μm
Total flux	${\cal F}$	5.0×10^{13} $3.2 \times$	6.0×10^{13} 10^{13}	ph/s

- The optimisation of the final focus and Fabry-Pérot cavity geometry led to a more realistic estimate for flux.
- The linac structure was considered and adapted to maximise flux.
- XLS could not benefit from the burst mode cavity optimisation.

Conclusions

- Electron beam parameter ranges were determined, based on CompactLight and HPCI injectors
- Laser parameters based on TRUMPF's 1 kW Dira 1000 laser were used.
- Tolerance studies of the laser beam offset were derived. Tolerances depend on requirements set by each application.
- Optimisation of the Fabry-Pérot cavity geometry resulted in flux values of 10¹⁴ ph/s for HPCI and 10¹²ph/s XLS, a photon intensity larger than any other existing or commissioned ICS source.
- A small final focus of the electron beam is being designed and optimised. From preliminary results, XLS allowed for smaller beam sizes to be achieved, due to the smaller emittance.
- Potential applications for high energy and high intensity x-rays include FLASH therapy, nuclear waste management, and semiconductor wafer inspection.
- Next steps: complete optimisation of the Fabry-Pérot cavity (effective gain); decide on application and compute the required parameters.

Name	E_{Xray} [keV]	${\cal F}~[{\rm ph/s}]$	BW [%]	σ_{Xray} (at IP) [µm]	σ_{Xray} (at sample) [mm]	Θ [mrad]
K-edge subtraction	33.7	$3 imes 10^{10}$	4.5	45×45	62×74	4
Phase contrast imaging	25	2.4×10^9	4	39×45	16×16	4
Microbeam radiation therapy	25	10^{13}	3.6	70	4	1.5
FLASH therapy	6,000-10,000 (?)	10^{14} (?)	-	50	17	-
Protein crystallography	7-35	10 ¹³	1.4	30	30	2
XRF	6.5-92	3×10^{10}	1-3	20	$20 \; \mu m$	-
Nuclear waste management	1,000-5,000	2.2×10^{13}	0.2	35	-	-
Semiconductor wafer inspection	20	10^{8}	1	-	$100 \ \mu m$	1
HPCI	< 2000	$< 10^{14}$	20 - 50	> 4	> 4	> 0.5
XLS	< 2000	$< 10^{12}$	1 - 20	> 10	> 10	> 0.5
				•		

Preliminary