

E_c⁰ production in p-Pb collisions at 5.02 TeV

January 4th 2022

KoALICE National Workshop 2021

Jeongsu Bok (Inha University)

Contents

- Introduction
 - \mathcal{Z}_c^0 production in p+Pb collisions
- Analysis Status
- Summary and Outlook

$\Xi_{\rm c}^{0}$ production in p+Pb collisions

- Heavy quarks are
 - Sensitive probes to study the Quark-Gluon Plasma in heavy-ion collisions.
 - Due to their large masses, they are formed in initial hard scattering of parton before the timescale of QGP formation
 - produced early in the collision, live long enough to sample QGP
 - Experience the whole system evolution
- Measurements in proton-nucleus collisions is crucial
 - For the interpretation of the results in nucleus-nucleus collisions, the measurement in proton-nucleus collisions is also crucial.
 - In such a system cold-nuclear-matter (CNM) effects can affect the production of charm hadrons: disentangle them from the effects related to the formation of the QGP (hot-medium effects)

$\Xi_{\rm c}^{0}$ production in p+Pb collisions

- Measurement of charmed baryon production could play an important role in studying hadronization process.
 - In pQCD calculations, the hadronisation process is modeled via a fragmentation function
 - Fragmentation functions are tuned on electron-positron data under the assumption that they are universal
 - Among other observables, the relative production of baryons and mesons (baryon/meson ratio) is sensitive to the fragmentation process
- The interaction with the medium constituents could modify the hadronisation:
 - a significant fraction of low and intermediate-momentum charm and beauty quarks could hadronise via recombination (coalescence) with other quarks from the medium
 - Models including coalescence predict an enhanced baryon-to-meson ratio at low and intermediate p_T relative to pp's

Heavy flavour hadronisation in small systems

$$\frac{d\sigma^{\rm D}}{dp_{\rm T}^{\rm D}}(p_{\rm T};\mu_{\rm R};\mu_{\rm F}) = \frac{PDF(x_1,\mu_{\rm F})PDF(x_2,\mu_{\rm F})}{\ln\text{itial State Parton Distribution}} \otimes \frac{d\sigma^{\rm c}}{dp_{\rm T}^{\rm c}}(x_1,x_2,\mu_{\rm R},\mu_{\rm F}) \otimes \frac{D_{\rm c} \rightarrow {\rm D}(z=p_{\rm D}/p_{\rm c},Q^2)}{\mu_{\rm P}^{\rm c}}$$

$$\frac{d\sigma^{\rm c}}{dp_{\rm T}^{\rm c}}(x_1,x_2,\mu_{\rm R},\mu_{\rm F}) \otimes \frac{D_{\rm c} \rightarrow {\rm D}(z=p_{\rm D}/p_{\rm c},Q^2)}{\mu_{\rm C}^{\rm c}}$$

- pQCD models based on the factorisation appoach:
 - use fragmentation fractions parametrised on e+e- and ep collision data
 - assume universality of fragmentation fractions versus collision systems and energies
- Recent measurements of heavy-flavour baryon production challenge this assumption
- Additional mechanisms at play in pp collisions beyond simple string fragmentation?

Charm Fragmentation Fraction

Eur. Phys. J. C76 (2016) no.7, 397

- Charm fragmentation fraction $f(\mathbf{c} \rightarrow \mathbf{H}) = \sigma(\mathbf{H}) / \Sigma_{\mathbf{H}} \sigma(\mathbf{H})$
- Measurements in different collision systems and at different energies agree within uncertainties.
- Support the hypothesis:
 - pQCD models based on factorisation approach use fragmentation fractions (FF) tuned on e+e- and consider them universal? Independent of collision systems?
- However,
 - $\sigma(\Sigma c)$, $\sigma(\Xi c)$ and $\sigma(\Omega c)$ were not included.
 - In 2015, only LHCb Ac+ measurement was available.
 - Rapidity range : 2.0 < y < 4.5
- Measurements of charm baryons are essential for total charm cross section and FF measurement
 - Charm baryon-to-meson & baryon-to-baryon yield ratio sensitive to hadronization

Models of HF Baryon Enhancement – PYTHIA8 CR tunes

 Partons created in different MPIs do not interact each other

- CR allowed between partons from different MPIs to minimize the string length.
- Monash tune

- Minimization of string length over all possible configurations
- Enhancement of hadrons
- CR mode X tunes
- PYTHIA 8 with Colour Reconnection (CR) tunes
 - Colour reconnection mode with QCD SU(3) algebra + string-length minimization
 - Junction connection topologies enhance baryon formation

Models of HF Baryon Enhancement

- Statistical Hadronisation Model (SHM) + additional baryon states PLB 795 (2019) 117-121
 - PDG: 5 Λc (I=0), 3 Σc (I=1), 8 Ξc (I=1/2), 2 Ωc (I=0)
 - RQM (Relativistic Quark Model) : Add 18 Λc, 42 Σc, 62 Ξc, 34 Ωc PRD 84 (2011) 014025
- Quark Recombination Mechanism (QCM)
 - Combination of charm quarks with co-moving light quarks
- Catania model PLB 821 (2021) 136622
 - Blast wave parametrization for light quarks spectra, FONLL calculation for heavy quarks spectra
 - Coalescence process of heavy quarks with light quark based on the Wigner formalism
 + fragmentation process

Charmed baryon/meson ratio in ALICE

arXiv:2105.05616 JHEP 10 (2021) 159

arXiv:2105.05187 PRL accepted : Jinjoo Seo

- Baryon-to-meson ratio in pp collisions at 5.02TeV and 13TeV
 - PYTHIA 8 Monash, PYTHIA 8 CR tunes, SHM+RQM and QCM underestimate the ratios significantly.
 - Catania shows better descriptions on the ratios in the measured p_T range.
- Baryon/Meson ratio comparison with light flavor
 - Λ_{c}^{+} : seems to have similar trend in both collision systems,
 - Decreasing p_T >2.3 in both pp pA, Peak at 2< p_T <4 in both HF,LF

Multiplicity dependence of Λ_c^+/D^0

- Smooth increasement from p+p, p+Pb to Pb+Pb multiplicities.
 - Λ_c^+/D^0 at low multiplicity already higher than e+e-
 - Λ_c^+/D^0 at high multiplicity reaching to Pb+Pb
 - In qualitative agreement with the hypothesis that recombination saturates already in high multiplicity p+p?
- Related analysis: Ξ_c^0 at pp 13 TeV (Dr. Chong Kim), Ξ_c^+ at pp 13 TeV (Jaeyoon Cho)

Chamrd baryon R_{pPb} (Λ_{c}^{+}) in p-Pb

• POWHEG+PYTHIA6

- EPJC 77 no. 3,(2017) 163, JHEP 09 (2007) 126
- CNM effect + PYTHIA 6 Parton shower + EPPS16 parameterization for PDFs

• POWLANG

- JHEP 03 (2016) 123
- Hot deconfined medium in p-Pb collisions.
- Describe the suppression at low p_{T} .

- Nuclear effects can be investigated measuring a nuclear modification factor R_{pPb}, defined as the ratio of particle yield in p-Pb collisions to those in pp collisions scaled by the average number of binary nucleon-nucleon collisions
- $R_{pPb} (\Lambda_{c}^{+})$ down to $p_T = 0$ GeV/c in p+Pb collisions
 - Above unity in $p_T > 2 \text{ GeV/}c$
 - Below unity in $p_T < 2 \text{ GeV/}c$
 - Possible modification due to radial flow or hadronisation mechanisms

Analysis procedure

- Select e and Ξ
- Make Right-Sign (RS) pairs (e-Ξ+, e+Ξ-) and Wrong-Sign (WS) pairs (e+Ξ+, e-Ξ-) which are selected to satisfy conditions
- Signal extraction by subtracting the WS spectra from the RS spectra
- Correct for the efficiency caused by the "prefilter" of electron candidates.
- Convert $p_T(e\Xi)$ into $p_T(\Xi_c^0)$ using unfolding technique.
- Efficiency correction
- Compute dσ

Analysis Detail: Electron selection

- Particle identification for electron : TPC
- Cut is optimized for electron
- High purity, low contamination after p_T dependent cut

Analysis Detail: E selection : E mass

- Ξ mass distribution.
- $\Xi_c^0 \rightarrow e^+ \Xi^- \nu \rightarrow e^+ (\pi^- \Lambda) \nu \rightarrow e(\pi p \pi) \nu$
 - Other cut variables

Cuts variables	cuts
Number of CrossedRows	>70
CrossedRows Over Findable Cluster	>0.77
Λ Mass tolerance (MeV/c ²)	7.5
Ξ Mass tolerance (MeV/c ²)	8
DCA of V0 to PV (cm)	>0.03
DCA of V0 daughters to PV (cm)	>0.073
V0 cosine of pointing angle to Ξ vertex	>0.983
Ξ cosine of pointing angle to PV	>0.983
DCA of bachelor track to PV (cm)	>0.0204
V0 decay length (cm)	>2.67
Ξ decay length (cm)	>0.38
$ n\sigma_{TPC} $ (proton)	<4
$ n\sigma_{TPC} $ (pion)	<4

Analysis Detail: prefilter: e-pair mass cut

- the number of eΞ pairs having the same-sign for which the electron has a same-sign partner which from a pair with invariant mass lower than 0.05 GeV.
 - peak at $m_{ee} \sim 0$ GeV/c² in the invariant mass distribution of such pairs, which clearly shows the contributions from the π^0 Dalitz decays and γ

Analysis Detail: Background subtraction

- Right-Sign(RS)
 - e+=-, e-=+
- Wrong-Sign (WS) pairs
 e+±+, e-±-
- we assume that most of the background sources contribute equally to WS and RS pairs
- Subtract WS same-sign pair from RS opposite-sign pair
- Invariant Mass cut
 - M(eΞ)<2.5 GeV/c²

MC production

- MC production is under final QA
- Xic-dedicated MC using PYTHIA8+HIJING
- Much more statistics than previous MC for electron from heavy flavor decay.

Unfolding

- Measured p_T is p_T of e- Ξ pair.
- missing momentum of neutrino $\Xi_c^0 \rightarrow e^+ \Xi^- v \rightarrow e^+ (\pi^- \Lambda) v \rightarrow e(\pi p \pi) v$
- Bayesian unfolding to extract p_T of Ξ_c^0 from p_T of eXi pair
- crosscheck with SVD unfolding, varying the number of iteration

Systematic uncertainty

- Syst. Included
 - e, Xi PID, reco
 - Pair mass, opening angle
 - Unfolding
- Missing syst.
 - ITS-TPC matching
 - rapidity range
 - prompt fraction

prompt fraction

- Following Lc analysis
 - ArXiv:2011.06079
 - assumed that the R_{pPb} of prompt and feed-down Lc were equal $0.9 < R_{pPb}^{\text{feed-down}}/R_{pPb}^{\text{prompt}} < 1.3$
 - Prompt fraction from pp5TeV
 - Referred D-meson paper
 - Phys. Rev. C94 no. 5, (2016) 054908
 - Additional uncertainty was small

of *D* mesons from *B* decays. On the basis of calculations including initial-state effects through the EPS09 nuclear PDF parametrizations [20] or the color glass condensate formalism [27], it was assumed that the R_{pPb} of prompt and feed-down *D* mesons were equal and their ratio was varied in the range $0.9 < R_{pPb}^{\text{feed-down}}/R_{pPb}^{\text{prompt}} < 1.3$ to evaluate the systematic uncertainties. The resulting f_{prompt} values and their

Cross Section

- σ_{pPb}^{MBAND} : cross section of MBAND trigger // 2.09e+06 ub
- $A \times \epsilon \times \epsilon_{\Xi_{tag}}$: product of the geometrical accepted (A) and the reconstruction and selection efficiency (ϵ) for $\Xi_c^0 \rightarrow e \Xi v$

KoALICE Workshop / Xic0 in pPb 5TeV / Jeongsu Bok

 p_{T} (GeV/c) p_{T} (GeV/c)

POWHEG+PYTHIA6

with CT14NLO+EPPS16 PDF (Ac)

POWLANG with HTL transport coefficients

10

Lc result ArXiv: 2011.06079

p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

10

8

12

_ D mesons (average D⁰, D⁺, D⁺)

JHEP 1912 (2019) 092, 2019

 $R_{\rm pPt}$

0.8 0.6

0.4

0.2

ALICE

-0.96 < v < 0.04

Rapidity correction for R_{pPb}

- FONLL rapidity ratio
 - Following Lc analysis <u>https://alice-notes.web.cern.ch/node/811</u>
 - pPb: -0.5<y_{Lab}<0.5
 - \rightarrow (y_{cms} = -y_{Lab} -0.465)
 - $\rightarrow -0.965 < y_{cms} < 0.035$
 - Uncertainty not applied yet. D* Central value only in this slide.

 $\frac{d\sigma^{-0.965 < y < 0.035}/dp_T}{d\sigma^{-0.5 < y < 0.5}/dp_T}$

Baron/Meson ratio (Ξ_c^0 **/D**⁰**)**

• Will be compared when the results come.

Summary and Outlook

- Studying charmed baryon in pPb collisions could play an important role in the investigation of strongly-interacting matter from heavy ion collisions and hadronization process.
- To do list in the analysis
 - Systematic uncertainty
 - Analysis note
- Expected results in January
 - R_{pPb}
 - Baryon/Meson ratio ($\Xi_c{}^0/D^0$) comparison with $\Lambda_c{}^+$
 - Baryon/Meson ratio with High Multiplicity pp result in terms of multiplicity

Activity in ALICE – ITS QC (FEE post-processing offline)

Lane Status Flag: ERROR Run 506606

- FEE post-processing offline
- Jeongsu Bok, Jaeyoon Cho
- collecting Lane Status Flags
 - ERROR, FAULT, OK, WARNING
 - To check the trend quickly and easily

Backup slides

Weighting Factor

- Match shape of MC and unfolded (unweighted) spectra in $2 < p_T < 12$
 - Normalize within 2<p_T<12, fit with exponential, then get the ratio between two functions → weighting factor
- Included in the systematic uncertainty.

Efficiency

- Weighted, unweighted difference is included in syst.
- Rapidity variation(y<0.5,0.8) is not included yet.

Multiplicity dependence of Λ_c^+/D^0

- Monash tune doesn't reproduce the pattern
- Enhanced CR mechanisms show a good agreement

Ω_{c}^{0}/D^{0} results in ALICE

ALI-PREL-486632

- $BRx\Omega_c^0/D^0$ ratio in pp collisions at 13TeV
 - First measurement of Ω_c^{0} production at LHC
 - BR ($\Omega_c^0 \rightarrow \Omega^- \pi^+$) = 0.51±0.07%
 - Theoretical calculation: EPJC 80, 1066 (2020)
- Model comparison
 - PYTHIA 8 Monash largely underestimate the measurement.
 - PYTHIA 8 CR tunes (Mode2) underestimate the measurement.
 - Catania and QCM
 - underestimate even though coalescence is included

Baryon-to-Baryon ratio: Ω_c^0 / Ξ_c^0 in ALICE

ALI-PREL-486637

- $BRx\Omega_c^0/D^0$ ratio in pp collisions at 13TeV
 - First measurement of Ω_c^0 production at LHC
 - BR ($\Omega_c^0 \rightarrow \Omega^- \pi^+$) = 0.51±0.07%
 - Theoretical calculation: EPJC 80, 1066 (2020)
- Model comparison
 - Largely underestimate the measurement.
 - PYTHIA 8 Monash, PYTHIA 8 CR tunes (Mode2), QCM
 - Except the Catania model
 - considers coalescence, fragmentation, and additional resonance states

Baryon-to-Baryon ratio: $=_c^{\circ}/\Lambda_c^{-}$, $=_c^{\circ}/\Sigma_c$ in ALICE

PYTHIA 8 Monash (EPJC 74 (2014) 3024) PYTHIA 8 CR Modes (JHEP 08 (2015) 003) SHM (PLB 795 (2019) 117-121) RQM (PRD 84 (2011) 014025) QCM (EPJC 78 no.4, (2018) 344) Catania (arXiv:2012.12001) Belle (PRD 97, 072005 (2018))

- Ξ_c^0/Λ_c^+ , Ξ_c^0/Σ_c in p+p 13 TeV
- First measurement of charm baryon-to-baryon ratio yields at the LHC.
- Similar enhancement for Ξ_c^{0} , Σ_c with respect to e+e-
- Ξ_c^{0}/Σ_c : Catania describes the magnitude and p_T shape, Monash describes the magnitude.
 - Both underestimate the ratio

Charm Fragmentation Fractions in pp collisions at LHC

H_c $f(c \rightarrow H_c)[\%]$

- $D^0 ~~ 39.1 \pm 1.7 (stat)^{+2.5}_{-3.7} (syst)$
- $D^+ ~~17.3 \pm 1.8 (stat)^{+1.7}_{-2.1} (syst)$
- $D_s^+ ~~7.3 \pm 1.0 (stat)^{+1.9}_{-1.1} (syst)$
- $\Lambda_c^+ ~~20.4 \pm 1.3 (stat) ^{+1.6}_{-2.2} (syst)$
- $\Xi_c^0 \qquad 8.0 \pm 1.2 (stat)^{+2.5}_{-2.4} (syst)$
- $D^{*+} \quad 15.5 \pm 1.2 (stat)^{+4.1}_{-1.9} (syst)$

arXiv:2105.06335

- We measure now all single charm hadron ground states
 - For the first time, fragmentation fraction for the $\Xi_{\rm c}{}^0$ baryon is measured
- Not counting D^{*+} contribution
 - Feed down into D⁰,D⁺
- charm fragmentation fractions:
 - Not universal

B factories (EPJC 76 no.7, (2016) 397) LEP (EPJC 77 no.1, (2015) 19) HERA (EPJC 76 no.7, (2016) 397)

Total charm cross section

STAR (PRD 86 (2012) 072013) PHENIX (PRC 84 (2001) 044905) FONLL (JHEP 10 (2012) 137) NNLO (PRL 118 (2017) 12, 122001)

- Charm production cross section at the LHC
- First measurement of charm production cross section per unit of rapidity at midrapidity in pp collisions at 5.02 TeV

 $d\sigma^{c\bar{c}}/dy|_{|y|<0.5} = 1165 \pm 44(\text{stat})^{+134}_{-101}(\text{syst})\,\mu b$

- According to new charm fragmentation fractions, updated charm cross section in pp 2.76, 7TeV are about 40% higher than previous publications
 - pp 2.76TeV (JHEP 07 (2012) 191)
 - pp 7TeV (EPJC 77 no. 8, (2017) 550)
- All ALICE results with new charm fragmentation fractions are at the upper edge of the pQCD calculations.