

Measurement of electrons from beauty-hadron decays in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

koALICE workshop — 4-7 Jan 2022

Jonghan Park

Inha University

Annual report in 2021

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

5

CERN-EP-2019-119 9 May 2019

Measurement of electrons from beauty-hadron decays in pp and Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 \,{\rm TeV}$

ALICE Collaboration*

Abstract

The production of electrons from beauty-hadron decays was measured at mid rapidity in protonproton (pp) and central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV using the ALICE detector at the LHC. The yield measured in pp in the transverse momentum interval $2 < p_T < 8 \text{ GeV}/c$ was compared 10 with models based on perturbative quantum chromodynamics calculations. The yield in the 10% 11 most central Pb-Pb collisions, measured in the interval $2 < p_T < 26 \text{ GeV}/c$, was used to compute the 12 nuclear modification factor R_{AA} , extrapolating the pp reference p_T above 8 GeV/c. The measured 13 R_{AA} is compatible with a constant value of about 0.4 for $p_T > 4 \text{ GeV}/c$. The results are consistent 14 with several theoretical models based on different implementations of the interaction of heavy quarks 15 with a quark–gluon plasma.

© 2019 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

*See Appendix A for the list of collaboration members

4-7 Jan 2022

Paper preparation for $b \rightarrow e$ in Pb—Pb at 5.02 TeV Target journal : Physical Review C (IRC round 2) Plan to submit on arXiv before QM 2022

Annual report in 2021

EURC		Pa
1 2 ALICE	Inha Aniversity	
3 Meası 4	LIPON THE RECOMMENDATION OF THE FACULTY OF THE	
5	GRADUATE SCHOOL HAS CONFERRED UPON	
6 7	JONG HAN PARK	► G
8 The 9 prote	THE DEGREE OF	
10 The 11 with 12 most 13 nucle	Doctor of Philosophy	
14 <i>R</i> _{AA} 15 with 16 with	in Physics	
	WITH ALL THE RIGHTS AND PRIVILEGES PERTAINING TO THAT DEGREE.	
	AWARDED AT INCHEON, KOREA THIS TWENTIETH DAY OF AUGUST, TWO THOUSAND AND TWENTY-ONE.	
	Tou Been Seo M.W. Chr	
© 2019 C Reproduct *See App	TAEBEOM SEO, Ph.D. DEANMYEONG WOO CHO, Ph.D. PRESIDENT	

4-7 Jan 2022

aper preparation for $b \rightarrow e$ in Pb—Pb at 5.02 TeV Target journal : Physical Review C (IRC round 2) Plan to submit on arXiv before QM 2022

raduate in Aug

Affiliation : koALICE & CENuM

koALICE national workshop — Jonghan Park

Annual report in 2021

4-7 Jan 2022

▶ Paper preparation for $b \rightarrow e$ in Pb—Pb at 5.02 TeV Target journal : Physical Review C (IRC round 2) ➡ Plan to submit on arXiv before QM 2022

Graduate in Aug

Affiliation : koALICE & CENUM

Take over b \rightarrow e analysis in pp at 13 TeV ➡ Today's main talk

Heavy-flavor production in pp collisions

- Heavy quarks produced in initial hard scattering processes
- HF hadron production measurements \rightarrow test of pQCD calculations

$$\sigma_{AB \to h}^{\text{hard}} = \text{PDF}(x_a, Q^2) \text{PDF}(x_b, Q^2) \otimes \sigma_{ab \to c}^{\text{hard}}(x_a, x_b, Q^2) \otimes D_{c \to h}(z = p_h/p_c, Q^2)$$

Parton distribution function (PDFs)

4-7 Jan 2022

Hard scattering cross section (pQCD)

Fragmentation function (hadronization)

Description in pp collisions based on factorization theorem \rightarrow fragmentation functions assumed universal and constrained from e⁺e⁻/ep measurements

Electrons from beauty-hadron decays

- Substantial branching ratio of semi-leptonic decays of beauty hadrons (~10%)
- Sizable decay length ($c\tau \approx 450-500 \mu m$) of beauty hadrons
 - \blacktriangleright Move far from the primary vertex than background hadrons \rightarrow large DCA
- Exploit the track impact parameter (IP) distributions

4—7 Jan 2022

secondary vertex

IP: Distance of Closest Approach to the primary vertex in the transverse plane

primary vertex

Signal extraction

Template fit method based on maximum likelihood approach

Likelihood for weighted sum of expectation values to correspond to data

- Stochastic extraction using the impact parameter fit
- Importance of MC templates to have realistic behavior based on data and model predictions

$\log L = \sum \text{data(bin)} \cdot \log \text{fit(bin)} - \text{fit(bin)} + \sum \sum N_{\text{source}}(\text{bin}) \cdot \log A_{\text{source}}(\text{bin}) - A_{\text{source}}(\text{bin})$ bin source

Likelihood for expectation values to correspond to MC templates

koALICE national workshop — Jonghan Park

Dataset and analysis strategy

- pp collisions at 13 TeV collected during 2016—2018
 Nr. of events : ~1.6 × 10⁹ events
- Analysis strategy
 - Select good quality events
 - Select tracks fulfilling high purity electron conditions
 - Electron identification using TPC+TOF
 - MC template corrections
 - Fit the impact parameter distribution in data using templates
 - Correction for acceptance and track selection criteria

data using templates ection criteria

Electron identification

- 3σ selection of TOF eID hypothesis
 - Most hadron contamination removed
 - \rightarrow Electron band has almost no change in TPC no vs. p distribution

4-7 Jan 2022

Reduce the remaining contamination by an asymmetric TPC no cut: $-1 < no_{TPC} < +3$

koALICE national workshop — Jonghan Park

Estimation of TPC eID efficiency and hadron contamination

- Fit the projection of TPC no vs. p on the no axis
 - Kaon/Pion described by Landau × Exponential

4-7 Jan 2022

MC template correction : IP mean and resolution

- Observe the track impact parameter differences between data and simulation
- Track impact parameter correction with AliAnalysisTaskSEImproveITSCVMFS
- Assurance check with charged pions
 - Select charged pions with $-5 < n\sigma_{TPC} < -3$
- Impact parameter mean and resolution extracted by a gaussian fit

1 '

MC template correction : IP mean and resolution

- Deviation still exists on both mean and resolution after correction
 - Maximum of 1 µm on the mean and 2% on the resolution

4—7 Jan 2022

MC template correction : HF hadron spectra

- Track impact parameter depends on p_T distribution of mother particle
- D^o spectrum in MC slightly differs from the measured D^o spectrum
- Interpolate both spectra and the ratio function is used as weight (data fit/MC fit)
 - Described by Tsallis function

4—7 Jan 2022

MC template correction : HF hadron spectra

- Not possible to use the same approach as charm case
 - \rightarrow b \rightarrow e spectrum provides information of B hadron spectrum
 - \rightarrow The information is not available prior to the b \rightarrow e measurement
- Model prediction, FONLL is adopted as a reference of B hadron spectrum
- B hadron p_T weight : interpolation of B hadron p_T in MC over FONLL
 - \rightarrow 2nd order polynomial for p_T < 3.5 GeV/c
 - \rightarrow 6th order polynomial for p_T > 3.5 GeV/c
- Not accept B hadrons having $p_T > 70 \text{ GeV/c}$
 - No matter due to very small contribution

koALICE national workshop — Jonghan Park

MC template correction : Charm hadron yield

Various charm hadrons have relatively different decay length All B hadrons have almost similar decay length

Species	D0	D+	Ds	Λ_{c}
Decay length (cτ)	122.9µm	311.8µm	151.2µm	60.7µm

Total charm template is the sum of various charm hadron templates

Ex) If the simulation underestimates the Λ_c ,

- $DCA_{charm} = DCA_{D^0} + DCA_{D^+} + DCA_{D_c} + DCA_{\Lambda_c}$

total charm template is wider than real charm DCA distribution

MC template correction : Charm hadron yield

- ALICE measured charm hadron fraction w.r.t D⁰ mesons
- Simulation underestimates D⁺, D_s, and Λ_c
 - Consider a branching ratio in the comparison between data and simulation
- \blacktriangleright Scale the D⁺, D_s, and Λ_c templates based on the measurements

4-7 Jan 2022

koALICE national workshop — Jonghan Park

$b \rightarrow e$ production cross section in pp collisions at 13 TeV

\blacktriangleright b—e production cross section

- Compared with FONLL prediction
 - Lying on the upper edge of the prediction
 - Comparable within uncertainty for p_T > 1.5 GeV/c

Statistical uncertainty estimated by Toy model approach Systematic uncertainty

- Maximum of 15% at lowest p⊤ interval
- Minimum of 4% at highest p⊤ interval

Large deviation at very low p_T as a former analysis

Summary and Outlook

- Finalize b—e paper (Pb—Pb collisions at 5.02 TeV) before QM
- $b \rightarrow e$ analysis in pp collisions at 13 TeV
 - Remaining systematics : IP resolution correction
 - Preparation for preliminary in Feb
 - \rightarrow Poster presentation at QM2022 by Vivek (b \rightarrow e high p_T analyzer)
- ITS3 beam test in Jun 2022
 - Beam test using proton beam at KOMAC

koALICE national workshop — Jonghan Park

Summary and Outlook

- Finalize b—e paper (Pb—Pb collisions at 5.02 TeV) before QM
- \blacktriangleright b—e analysis in pp collisions at 13 TeV
 - Remaining systematics : IP resolution correction
- Thank you to 202 your (attention)
- ► ITS3 beam test in Jun 2022
 - Beam test using proton beam at KOMAC

みれ…

koALICE national workshop — Jonghan Park

BACKUP

TPC no fit - electron peak described by Landau × Exponential

4–7 Jan 2022

D meson weight and variation for D⁰ spectrum

4-7 Jan 2022

B hadron spectrum before and after weight

Variation of B hadron weight for systematics

4-7 Jan 2022

