Et production with ALICE and Ett production with ALICE 3

Jinjoo Seo **Inha University**

2022. 01. 04

2021 KoALICE National Workshop

04 JAN 2021

ALICE Overview

Jinjoo Seo - KoALICE

Jinjoo Seo - KoALICE

Production of charm hadrons

04 Jan 2022

Jinjoo Seo - KoALICE

Hadronisation by fragmentation

Initial Parton distribution function

04 Jan 2022

Jinjoo Seo - KoALICE

pQCD partonic cross section

Hadronisation by fragmentation

$PDF(x_a, \mu_{\rm F})PDF(x_b, \mu_{\rm F}) \otimes \frac{d\sigma^{\rm c}}{dp_{\rm T}^{\rm c}}(x_a, x_b, \mu_{\rm R}, \mu_{\rm F}) \otimes D_{\rm c \to H_c}(z = p_{\rm H_c}/p_c, \mu_{\rm F})$

ALI-DER-493901

- $\Xi_c^{0,+}$ measurements in pp collisions at 13 TeV
 - Charm-strange baryon measurements were underestimated by most models.

04 Jan 2022

E^{0,+} measurements in ALICE

Jinjoo Seo - KoALICE

• $\Xi_c^{0,+}$ measurements in pp collisions at 13 TeV

- Charm-strange baryon measurements were underestimated by most models.
 - cf) $D_s^+/(D^0 + D^+)$ (Non-prompt) compatible with expectations from e+e-.
 - $_{2}^{0,+}$ measurements offer new constraints to the model prediction!

04 Jan 2022

E^{0,+} measurements in ALICE

measurements in ALICE

- $\Xi_c^{0,+}$ measurements in pp collisions at 13 TeV
 - Branching-Fraction Ratio of Ξ_c^0 : Total uncertainty was reduced by a factor 3 w.r.t the PDG.

ALI-PUB-488898

04 Jan 2022

Jinjoo Seo - KoALICE

measurements in ALICE

- $\Xi_c^{0,+}$ measurements in pp collisions at 13 TeV
 - Branching-Fraction Ratio of Ξ_c^0 : Total uncertainty was reduced by a factor 3 w.r.t the PDG.

ALI-PUB-488898

04 Jan 2022

• Status of paper

04 Jan 2022

Published 28 December 2021

Measurement of the Cross Sections of Ξ_c^0 and Ξ_c^+ Baryons and of the Branching-Fraction Ratio BR $(\Xi_c^0 \to \Xi^- e^+ \nu_e)/BR(\Xi_c^0 \to \Xi^- \pi^+)$ in *pp* Collisions at $\sqrt{s} = 13$ TeV

S. Acharya et al.* (A Large Ion Collider Experiment Collaboration)

(Received 2 August 2021; revised 18 October 2021; accepted 19 November 2021; published 28 December 2021)

The p_T -differential cross sections of prompt charm-strange baryons Ξ_c^0 and Ξ_c^+ were measured at midrapidity (|y| < 0.5) in proton-proton (*pp*) collisions at a center-of-mass energy $\sqrt{s} = 13$ TeV with the ALICE detector at the LHC. The Ξ_c^0 baryon was reconstructed via both the semileptonic decay ($\Xi^- e^+ \nu_e$) and the hadronic decay $(\Xi^{-}\pi^{+})$ channels. The Ξ_{c}^{+} baryon was reconstructed via the hadronic decay $(\Xi^{-}\pi^{+}\pi^{+})$ channel. The branching-fraction ratio $BR(\Xi_{c}^{0} \rightarrow \Xi^{-}e^{+}\nu_{e})/BR(\Xi_{c}^{0} \rightarrow \Xi^{-}\pi^{+}) = 1.38 \pm$ $0.14(\text{stat}) \pm 0.22(\text{syst})$ was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (p_T) dependence of the Ξ_c^0 - and Ξ_c^+ -baryon production relative to the D^0 meson and to the $\Sigma_c^{0,+,++}$ - and Λ_c^+ baryon production are reported. The baryon-to-meson ratio increases toward low p_T up to a value of approximately 0.3. The measurements are compared with various models that take different hadronization mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronization in electron-positron (e^+e^-) and hadronic collisions.

DOI: 10.1103/PhysRevLett.127.272001

measurements in ALICE

PHYSICAL REVIEW LETTERS 127, 272001 (2021)

Jinjoo Seo - KoALICE

- Large mass of the charm quarks ($m_c \sim 1274 \text{MeV}/c^2$) \rightarrow Produce initial hard scattering process • Strong probe to detect the QGP formation and to study the hadronisation mechanism in the medium

ALICE 3 Physics goal

Jinjoo Seo - KoALICE

- Large mass of the charm quarks ($m_c \sim 1274 \text{MeV}/c^2$) \rightarrow Produce initial hard scattering process • Strong probe to detect the QGP formation and to study the hadronisation mechanism in the medium

ALICE 3 Physics goal

Jinjoo Seo - KoALICE

- Large mass of the charm quarks ($m_c \sim 1274 \text{MeV}/c^2$) \rightarrow Produce initial hard scattering process • Strong probe to detect the QGP formation and to study the hadronisation mechanism in the medium

ALICE 3 Physics goal

Jinjoo Seo - KoALICE

- Large mass of the charm quarks ($m_c \sim 1274 \text{MeV}/c^2$) \rightarrow Produce initial hard scattering process • Strong probe to detect the QGP formation and to study the hadronisation mechanism in the medium

ALICE 3 Physics goal

Jinjoo Seo - KoALICE

- Large mass of the charm quarks ($m_c \sim 1274 \text{MeV}/c^2$) \rightarrow Produce initial hard scattering process • Strong probe to detect the QGP formation and to study the hadronisation mechanism in the medium

ALICE 3 Physics goal

04 JAN 2021

04 JAN 2021

~1% over full η range

04 JAN 2021

04 JAN 2021

04 JAN 2021

04 JAN 2021

Excellent e/π separation

Ξ_{cc}^{++} Performance study with ML

- Analysis Task
 - **O2Physics** : hf-tree-creator-xicc-topkipipi (hf-task-xicc)

Ξ_{cc}^{++} Performance study with ML

- Analysis Task
 - **O2Physics** : hf-tree-creator-xicc-topkipipi (hf-task-xicc)
- ML package
 - **hipe4ml** : <u>https://github.com/hipe4ml/hipe4ml</u>
 - BDT algorithm : XGBoost

trackextension

Ξ_{cc}^{++} Performance study with ML

- Analysis Task
 - **O2Physics :** hf-tree-creator-xicc-topkipipi (hf-task-xicc)
- ML package
 - hipe4ml : <u>https://github.com/hipe4ml/hipe4ml</u>
 - BDT algorithm : XGBoost
- Input sample
 - Signal : Ξ_{cc}^{++} enhanced MC; generated by DelphesO2
 - Background : pp 14TeV MB MC; on the AliHyperloop

ぼ +/-	HF O2 developments for ALICE3 pp C)pen HF 2.0 T					
Analyzers:	apalasci, dthomas, fcolamar, fgrosa, ginn	ocen,jseo,ldellos	t,pchrist,skun	du, strogolo, vl	kucera 📋		
Package:	O2Physics::nightly-20211227-1				or newer tags	Future t	ag based
	Wagon	LHC21d9	LHC21d9	LHC21d9i	LHC21d9f	LHC21d9	LHC2 ²
hf-task-xico		×	×	🔽 🗵	×	×	×
hf-track-ind	dex-skims-creator-2-3-prong-openhf	×	×	×	×	×	×
						••	
hf-tree-cre	ator-xicc-topkpipi 📫	×	×	V X	×	×	×

trackextension

• Signal vs background distribution ($2 \le p_T < 4 \, \text{GeV}/c$)

04 JAN 2021

Signal vs Background

Jinjoo Seo - KoALICE

BDT model output

• Feature importance $(2 \le p_T < 4 \,\text{GeV}/c)$

- Cosine of pointing angle of Ξ_{cc}^{++} is critical to separate the signal and background.

04 JAN 2021

1.2 0.8 1.0 mean(|SHAP value|) (average impact on model output magnitude)

Jinjoo Seo - KoALICE

BDT model output

- Model output $(2 \le p_{\rm T} < 4 \,{\rm GeV}/c)$
 - **BDT output :** Kind of the probability of signal
 - 0.999 BDT output cut is applied to separate the signal and background.

04 JAN 2021

• Performance study : Ξ_{cc}^{++} on non-strangeness decay

- Efficiency : Increases with p_T due to higher momentum π^+
- Significance

arXiv:hep-ph/9710339

- Large uncertainty on production cross section(factor 200) and branching ratio(factor 5)

Results

• Signal/event : Theoretical expectation(cross section, 39 nb) + PYTHIA 8 (p_T shape) + efficiency + BR(0.03%)

Summary of 2021 Activity

- $\Xi_c^{0,+}$ production in pp collisions at 13 TeV
 - Thanks a lot for all of your help!

PHYSICAL REVIEW LETTERS **127**, 272001 (2021)

Measurement of the Cross Sections of Ξ_c^0 and Ξ_c^+ Baryons and of the Branching-Fraction Ratio BR $(\Xi_c^0 \to \Xi^- e^+ \nu_e)/BR(\Xi_c^0 \to \Xi^- \pi^+)$ in pp Collisions at $\sqrt{s} = 13$ TeV

> S. Acharya et al.* (A Large Ion Collider Experiment Collaboration)

(Received 2 August 2021; revised 18 October 2021; accepted 19 November 2021; published 28 December 2021)

The p_T -differential cross sections of prompt charm-strange baryons Ξ_c^0 and Ξ_c^+ were measured at midrapidity (|y| < 0.5) in proton-proton (pp) collisions at a center-of-mass energy $\sqrt{s} = 13$ TeV with the ALICE detector at the LHC. The Ξ_c^0 baryon was reconstructed via both the semileptonic decay ($\Xi^- e^+ \nu_e$) and the hadronic decay $(\Xi^{-}\pi^{+})$ channels. The Ξ_{c}^{+} baryon was reconstructed via the hadronic decay $(\Xi^{-}\pi^{+}\pi^{+})$ channel. The branching-fraction ratio $BR(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e})/BR(\Xi_{c}^{0}\to\Xi^{-}\pi^{+})=1.38\pm$ $0.14(\text{stat}) \pm 0.22(\text{syst})$ was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (p_T) dependence of the Ξ_c^{0-} and Ξ_c^{+} -baryon production relative to the D^0 meson and to the $\Sigma_c^{0,+,++}$ - and Λ_c^{+} baryon production are reported. The baryon-to-meson ratio increases toward low p_T up to a value of approximately 0.3. The measurements are compared with various models that take different hadronization mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronization in electron-positron (e^+e^-) and hadronic collisions.

DOI: 10.1103/PhysRevLett.127.272001

Measurements of heavy-flavor hadron production in high-energy proton-proton (pp) collisions provide important tests of quantum chromodynamics (QCD). The cross sections of heavy-flavor hadrons are usually computed using the factorization approach as a convolution of three factors [1]: (i) the parton distribution functions of the incoming protons, (ii) the hard-scattering cross section at partonic level, and (iii) the fragmentation function of heavy quarks into a given heavy-flavor hadron. The D- and *B*-meson cross sections in pp collisions at several center-of-mass energies at the LHC [2-7] are described within uncertainties by perturbative QCD calculations [8-12], which use fragmentation functions tuned on e^+e^- data, over a wide range of transverse momentum (p_T) . Measurements of Λ_c^+ -baryon production at midrapidity in pp collisions at the center-of-mass energy $\sqrt{s} = 5.02$ and 7 TeV were reported by the ALICE and CMS Collaborations in Refs. [13–15]. The measured Λ_c^+/D^0 ratio is higher than previous measurements in e^+e^- [16–18] and $e^{-}p$ [19,20] collisions. A similar observation was drawn from the measurement of the inclusive Ξ_c^0 -baryon

production at midrapidity in pp collisions at $\sqrt{s} =$ 7 TeV [21].

PYTHIA8.2 tunes including string formation beyond the leading-color approximation [22] and a statistical hadronization model (SHM) [23] including a set of higher-mass charm-baryon states as prescribed by the relativistic quark model (RQM) and from lattice QCD [24,25] qualitatively describe the measured $\Sigma_c^{0,+,++}/D^0$ and Λ_c^+/D^0 cross section ratios [15,26], but underestimate the Ξ_c^0/D^0 ratio [21]. The observed enhancement of the charm-baryon production can also be explained by model calculations considering hadronization of charm quarks via coalescence in addition to the fragmentation in pp collisions [27,28]. The increased vield of charm baryons makes it mandatory to include their contribution for an accurate measurement of the $c\bar{c}$ production cross section in pp collisions at the LHC [29].

In this Letter, the measurements of the cross sections of the prompt (i.e., produced directly in the hadronization of charm quarks and in the decays of directly produced excited charm states) charm-strange baryons Ξ_c^0 and Ξ_c^+ at midrapidity (|y| < 0.5) in pp collisions at $\sqrt{s} = 13$ TeV are reported. The Ξ_c^0 baryon was reconstructed via the decay channels $\Xi^- e^+ \nu_e$, BR = $(1.8 \pm 1.2)\%$ and $\Xi^- \pi^+$, $BR = (1.43 \pm 0.32)\%$ [30] together with their charge conjugates in the interval $1 < p_T < 12 \text{ GeV}/c$. The Ξ_c^+ baryon was reconstructed via the decay channel $\Xi^-\pi^+\pi^+$, $BR = (2.86 \pm 1.21 \pm 0.38)\%$ [31], together with its charge conjugate, in the interval $4 < p_T < 12 \text{ GeV}/c$.

Jinjoo Seo - KoALICE

^{*}Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Summary of 2021 Activity

• $\Xi_c^{0,+}$ production in pp collisions at 13 TeV

• Thanks a lot for all of your help!

• Ξ_{cc}^{++} Performance study

- O2Physics
 - Develop analysis workflow
- ALICE 3 Lol
 - Still working on until final review
 - Open for comments: until 21 January
 - Final LHCC Review : 21 February

04 JAN 2021

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-LHCC-202 ALICE-PUBLIC-2021-xxx

Letter of Intent: ALICE 3

Draft v3 ALICE Collaboration

*See Appendix ?? for the list of collaboration members

© 2021 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Back up

And I have been

- Unfolding

Unfolding

- The p_{T} of e \equiv pairs is corrected for the missing momentum of the neutrino using unfolding techniques.
- Convergence of the Bayesian unfolding is achieved after three iterations.

ALI-PREL-344791

04 Jan 2022

Jinjoo Seo - KoALICE

ALICE 3 Physics needs

Luminosity

- In pp collisions : O(10-100) fb⁻¹
- In AA collision : O(10) fb⁻¹

Tracking/Vertexing

- Primary/secondary vertex resolution and d_0 : O (1) μm
- $p_{\rm T}$ reach down to ~ 100 MeV
- J/ψ reconstruction down to 0 GeV
 - σ(p_T) is probably critical here!
- Particle Identification
 - Hadron PID : p ~ 0.1 to 2-3 GeV/c
 - Lepton PID : p ~ 0.7-1 to 5-10 GeV/c

• Both $\sigma(p_T)$ and $\sigma(d_0)$ matters!

ML Preselection & Training variable

Pre-selection and Training variable

- Very loose cuts
 - InSigmaTOFI < 3 & InSigmaTOFCombinedI < 5 are already applied to reduce the tree output size
 - NOT considered nSigmaTOF and nSigmaTOFCombined as training variable -> will be added

Preselection

Training variable

```
("fDecayLength", &fDecayLength);
("fDecayLengthXY", &fDecayLengthXY);
("fDecayLengthNormalised", &fDecayLengthNormalised);
("fDecayLengthXYNormalised", &fDecayLengthXYNormalised);
("fImpactParameterNormalised0", &fImpactParameterNormalised0);
("fPtProng0", &fPtProng0);
("fPProng0", &fPProng0);
("fImpactParameterNormalised1", &fImpactParameterNormalised1);
("fPtProng1", &fPtProng1);
("fPProng1", &fPProng1);
("fImpactParameter0", &fImpactParameter0);
("fImpactParameter1", &fImpactParameter1);
("fErrorImpactParameter0", &fErrorImpactParameter0);
("fErrorImpactParameter1", &fErrorImpactParameter1);
("fCPA", &fCPA);
("fCPAXY", &fCPAXY);
```


• Signal vs background distribution ($2 \le p_T < 4 \, \text{GeV}/c$)

04 JAN 2021

Jinjoo Seo - KoALICE

Signal vs Background

BDT model output

ROC curve

Multi-HF hadron

$$\begin{aligned} \Xi_{cc}^{++} &\to \Xi_{c}^{+} + \pi^{+} \\ & \Xi_{c}^{+} \to p + K^{-} + \pi^{+} \end{aligned}$$

$$\begin{split} \Omega_{ccc}^{++} &\to \Omega_{cc}^{+} + \pi^{+} & & \\ \Omega_{cc}^{+} &\to \Omega_{c}^{0} + \pi^{+} & & 5\% \\ \Omega_{c}^{0} &\to \Omega^{-} + \pi^{+} & & 5\% \\ \Omega^{-} &\to \Lambda + K^{-} & & 67.8\% \\ \Lambda &\to p + \pi^{-} & & 63.9\% \\ 0.0054\% \end{split}$$

PYTHIA 8 with Colour Reconnection (CR) tunes JHEP 08 (2015) 003

- Colour reconnection mode with QCD SU(3) algebra + string-length minimization
- Junction connection topologies enhance baryon formation
- Mode parameters : string reconnection, connection causality of dipoles, time dilation

• Partons created in different MPIs do not interact each other

- CR allowed between partons from different MPIs to minimize the string length
- Used in Monash tune

04 Jan 2022

- Minimization of string length over all possible configurations
- Enhancement of hadrons
- Used in CR mode X tunes

PYTHIA 8 with Colour Reconnection (CR) tunes JHEP 08 (2015) 003

- Colour reconnection mode with QCD SU(3) algebra + string-length minimization
- Junction connection topologies enhance baryon formation
- Mode parameters : string reconnection, connection causality of dipoles, time dilation
- Statistical Hadronisation Model (SHM) + additional baryon states PLB 795 (2019) 117-121
 - **PDG** : 5 Λ_c (I=0), 3 Σ_c (I=1), 8 Ξ_c (I=1/2), 2 Ω_c (I=0)
 - RQM (Relativistic Quark Model) : Add 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c PRD 84 (2011) 014025

$n_i \ (\cdot 10^{-4} \ {\rm fm}^{-3})$	D^0	D^+	D^{*+}	D_s^+	Λ_c^+	$\Xi_c^{+,0}$	Ω_c^0
PDG(170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	0.0064
PDG(160)	0.4996	0.2223	0.2113	0.1311	0.1201	0.0304	0.0021
RQM(170)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	0.0144
RQM(160)	0.4996	0.2223	0.2113	0.1311	0.2203	0.0391	0.0044

Jinjoo Seo - KoALICE

PYTHIA 8 with Colour Reconnection (CR) tunes JHEP 08 (2015) 003

- Colour reconnection mode with QCD SU(3) algebra + string-length minimization
- Junction connection topologies enhance baryon formation
- Mode parameters : string reconnection, connection causality of dipoles, time dilation
- Statistical Hadronisation Model (SHM) + additional baryon states PLB 795 (2019) 117-121
 - **PDG**: 5 Λ_c (I=0), 3 Σ_c (I=1), 8 Ξ_c (I=1/2), 2 Ω_c (I=0)
 - RQM (Relativistic Quark Model) : Add 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c PRD 84 (2011) 014025
- Quark Recombination Mechanism (QCM) EPJC 78 no.4, (2018) 344
 - Combination of charm quarks with co-moving light quarks

04 Jan 2022

PYTHIA 8 with Colour Reconnection (CR) tunes JHEP 08 (2015) 003

- Colour reconnection mode with QCD SU(3) algebra + string-length minimization
- Junction connection topologies enhance baryon formation
- Mode parameters : string reconnection, connection causality of dipoles, time dilation
- Statistical Hadronisation Model (SHM) + additional baryon states PLB 795 (2019) 117-121
 - **PDG**: 5 Λ_c (I=0), 3 Σ_c (I=1), 8 Ξ_c (I=1/2), 2 Ω_c (I=0)
 - RQM (Relativistic Quark Model) : Add 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c PRD 84 (2011) 014025
- Quark Recombination Mechanism (QCM) EPJC 78 no.4, (2018) 344
 - Combination of charm quarks with co-moving light quarks
- Catania model arXiv:2012.12001
 - Coalescence process of heavy quarks with light quark based on the Wigner formalism + fragmentation process • Blast wave parametrization for light quarks spectra, FONLL calculation for heavy quarks spectra

04 Jan 2022

Parameter StringPT:sigma StringZ:aLund StringZ:bLund StringFlav:probQQtoQ StringFlav:ProbStoUD

StringFlav:probQQ1toQQ0join

MultiPartonInteractions:pT0Ref BeamRemnants:remnantMode BeamRemnants:saturation ColourReconnection:mode ColourReconnection:allowDoubleJunRem ColourReconnection:m0 ColourReconnection: allowJunctions ColourReconnection:junctionCorrection ColourReconnection:timeDilationMode ColourReconnection:timeDilationPar

04 Jan 2022

PYTHIA

	Monash	Mode 0	Mode 2	Mode 3
	= 0.335	= 0.335	= 0.335	= 0.335
	= 0.68	= 0.36	= 0.36	= 0.36
	= 0.98	= 0.56	= 0.56	= 0.56
	= 0.081	= 0.078	= 0.078	= 0.078
	= 0.217	= 0.2	= 0.2	= 0.2
	= 0.5,	= 0.0275,	= 0.0275,	= 0.0275,
	0.7,	0.0275,	0.0275,	0.0275,
	0.9,	0.0275,	0.0275,	0.0275,
	1.0	0.0275	0.0275	0.0275
	= 2.28	= 2.12	= 2.15	= 2.05
	= 0	= 1	= 1	= 1
	-	= 5	= 5	= 5
	= 0	= 1	= 1	= 1
n	= on	= off	= off	= off
	-	= 2.9	= 0.3	= 0.3
	-	= on	= on	= on
	-	= 1.43	= 1.20	= 1.15
	-	= 0	= 2	= 3
	-	-	= 0.18	= 0.073

JHEP 08 (2015) 003, arXiv:1505.01681v1

Jinjoo Seo - KoALICE