The study on the medium parton distribution

from momentum kick model

in Heavy-Ion Collisions

Soyeon Cho

Departments of physics, Inha University

2022. 01. 04 KoALICE National Workshop

Ridge structure

Understanding via elliptic and higher-order flow

How about in high-multiplicity small systems?

Try to explain through kinematics between Jet & Medium

CMS collaboration, Physical Letters B 724, 213{240 (2013)

ATLAS collaboration, Physical Review Letters 116, 172301 (2016)

Bremsstrahlung process

- Kinematics between Jet & Medium
 - Jet's energy loss with radiation
 - Photon (Bremsstrahlung)
- According to previous study
 - Medium partons aligned along the jet
 - Collective motion
- We expect...
 - Might interfere constructively
 - Explain Ridge structure

Coordinates

Jet plane

Jet plane + Beam direction

Distribution for initial medium partons

• We consider all possible initial medium parton's momentum

 $\int d^3 \vec{a} \to \int f(y_a, a_T) \times |J| dy_a a_T \varphi_a$

- Adopt distribution function for describing
 - Maxwell-Boltzmann distribution (MB)
 - Juttner-Synge distribution (JS)
 - Phenomenological Parton Distribution from Soft scattering model (phPDs)
 - Phenomenological Parton Distribution from Hard scattering model (phPDh)

C.-Y. Wong, G. Wilk, L.J. Cirto and C. Tsallis, PRD 91 114027 (2015)

R. Hagedorn, Nuovo Cimento 6, 1 (1983)

C. Michael and L. Vanryckeghem J. Phys . G 3 , L151 (1977)

Distribution for initial medium partons

- Rapidity distribution
 - MB and JS are too narrow to explain $|y_a| > 2$ regions
- Transverse momentum distribution
 - JS have wide shapes from others
- Lightcone variable distribution
 - phPDs is prohibited at x > 0.15

multiplicity

(a = 20.0)

Expression of phPDh

$$f(y_a, a_T) = A(1-x)^a \left[1 - (1-q)\frac{m_T}{T}\right]^{\frac{1}{1-q}}$$

- Free parameters
 - *a* : Fallout parameter which decide shape of rapidity distribution
 - q : Non-extensive parameter which Phenomenologically equivalent to the quasi-power law
 - *T* : Temperature of system
- Lightcone variable

$$x = \frac{\sqrt{m_{\pi}^2 + a_T^2}}{m_p} e^{|y_a| - y_b}$$

Dependency of phPDh

- *a* increases, scales of rapidity increase
- q increases, the shape of rapidity become shaper
- T increases, scales of rapidity slightly increase

Dependency of phPDh

- q increases, transverse momentum distribution is spread wider
- T increases, transverse momentum distribution is slightly spread

Dependency of phPDh

• *a* increases, the range of lightcone becomes narrow

Select values of free parameters

- Through comparing to PYTHIA monash simulation...
 - *a* = 20 ~ 25
 - *q* = 1.15
 - T = 0.15 GeV

Correlation

- Range of Δy is enough to express the Ridge structure
- Peaks in marginal Δy are high : Need to investigate

Summary

• Introduce new distribution function, phPDh

$$f(y_a, a_T) = A(1-x)^a \left[1 - (1-q)\frac{m_T}{T}\right]^{\frac{1}{1-q}}$$

- Check characteristics for each free parameter, *a*, *q*, *T*
- Compare to PYTHIA simulation and choose free parameters
- Calculate correlation with selected values
- Need to investigate at $\Delta y \sim 5$
- Consider to include jet components