$f_0(980)$ production with ALICE

${\rm Junlee\,Kim}$

Jeonbuk National University, South Korea

January 4, 2022 KoALICE National Workshop

Status summary for $f_0(980)$ analysis in ALICE

- $f_0(980)$ production in pp at $\sqrt{s} = 5.02$ TeV
 - Preliminary results, which had been approved in QM 2018, were updated
 - Paper proposal was approved by Bologna group: https://alice-publications.web.cern.ch/node/7410
- Multiplicity dependent $f_0(980)$ production in p–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV
 - Analysis Note was approved: https://alice-notes.web.cern.ch/node/1018
 - Measurements were fully approved
 - Further preparation on model calculation to support our messages
- Multiplicity dependent $f_0(980)$ production in pp collisions at $\sqrt{s} = 13$ TeV
 - Analysis Note: https://alice-notes.web.cern.ch/node/884
- $f_0(980)$ production in Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV
 - A few updates were presented in PAG resonance meeting.
 - Targeting $f_0(980) v_2$ with the event plane method

Long-term plan for $f_0(980)$ analysis

- \bullet p–Pb@5.02 TeV
 - Particle yield ratios
 - Nuclear modification factor of $f_0(980)$ in p–Pb
- \bullet Pb–Pb@5.02 TeV
 - $f_0(980) v_2$ with the event plane method
 - Test NCQ scaling
- \bullet + pp@13 TeV + p–Pb@8.16 TeV + ...
 - Production of $f_0(980)$ with ALICE

JBNU's contribution to $f_0(980)$ analysis

- $f_0(980)$ production in pp at $\sqrt{s} = 5.02$ TeV
 - Cross-checking the preliminary result
 - Preliminary results were found to be wrong by JBNU.
 - Results were updated by Bologna group.
- Multiplicity dependent $f_0(980)$ production in p–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV
 - ARC and conveners agreed with the measurement itself.
 - Preparation on the model expectation to support physics messages
- $f_0(980)$ production in Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV
 - Updates on signal extraction method and finer $p_{\rm T}$ bin definition.

Short-lived Resonances

• Measured resonance yields are modified in the hadronic phase via regeneration and re-scattering.

• Short-lived resonances are powerful probes to understand hadronic phase.

Re-scattering effect with UrQMD

PLB 807 (2020) 135501

- (K^{*0}/K) and (ρ/π) : probes to observe the re-scattering effect.
- With UrQMD, decreasing trends are well described.
 - Multiplicity dependent re-scattering effect.

6/21

Particle yield ratio

- (K^{*0}/K) : cancelling out the strangeness enhancement
 - Re-scattering effect in low $p_{\rm T}$.
- (K^{*0}/π) : flat with increasing multiplicity in p–Pb.
 - Due to two competing effects, strangeness enhancement and re-scattering effect.

What we can study from $f_0(980)$

- One of scalar mesons, whose quark contents are still controversial
 - $n(u, d)\bar{n}$ state: PRD 67, 094011 (2003)
 - 4 quarks state: PRD 103, 014010 (2021)
 - Molecule state: PRD 101 094034 (2020)
- $f_0(980)$ yield can be largely affected by the hadronic re-scattering effect due to the short lifetime of $f_0(980)$ ($\tau_{f_0} \sim 5 \text{ fm}/c$).
- Particle yield ratios of $f_0(980)$ enable to
 - Observe the hadronic phase
 - Explore internal structures of $f_0(980)$
- Cronin peak, which came from radially boosted quarks, could suggest the number of quarks for $f_0(980)$
 - Tetra-quark state: May expect similar (or larger) Cronin peak with baryons in the intermediate or higher $p_{\rm T}$
 - $q\bar{q}$: Small Cronin peak.

	ρ^0	K^*	$f_0(980)$	ϕ
Mass (MeV/c^2)	775	892	990	1020
J^P	1-	1^{-}	0+	1-
Contents	$rac{uar{u}+dar{d}}{\sqrt{2}}$	$d\bar{s}$???	$s\bar{s}$
lifetime (fm/c)	1.3	4.2	~ 5	46.2

Cross-checking pp results

This work / QM 2018

Vield of f_0 , INEL

- Previous results at QM 2018 were found to be wrong
- Updated pp results from Bologna group show compatible spectrum with this work within 10%

Signal extraction and $p_{\rm T}$ spectrum of f₀(980) in p–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV

• Each resonance is corrected by Phase space correction, $PS(M_{\pi\pi}) = \frac{M_{\pi\pi}}{2} \exp(-\sqrt{M_{\pi\pi}^2 + p_{\rm T}^2}/T)$

$$(M_{\pi\pi}^{2}) = \sqrt{M_{\pi\pi}^{2} + p_{\rm T}^{2}} \sqrt{M_{\pi\pi}^{2} + p_{\rm T}^{2}}$$

- Residuals are described by $f_{BG}(M_{\pi\pi}) = (M_{\pi\pi} - 2m_{\pi})^n A \exp(BM_{\pi\pi} + CM_{\pi\pi}^2)$
- In total, $f(M_{\pi\pi}) = (N_{\rho} r BW_{\rho 0}(M_{\pi\pi}) + N_{f_0} r BW_{f_0}(M_{\pi\pi}) + N_{f_2} r BW_{f_2}(M_{\pi\pi})) \times PS(M_{\pi\pi}) + f_{BG}(M_{\pi\pi})$
- $\bullet\,$ Fully corrected with $\varepsilon \times A$ and normalized to NSD class

- Clear strangeness enhancement from (ϕ/π)
- Strangeness enhancement and re-scattering effect are competing (K^{*0}/π)
- Decreasing (f_0/π) was observed, why?

Probing late hadronic phase with $f_0(980)$: Re-scattering effect

- Significant suppression in high-multiplicity events at low $p_{\rm T}$ (< 3 GeV/c)
- Little modification at high $p_{\rm T}$ (> 4 GeV/c)
- Re-scattering effect with $f_0(980)$ in p–Pb collisions is clearly observed!

Exploring internal structures of $f_0(980)$: Strangeness enhancement

- Re-scattering effect would be compatible between f_0 and K^{*0} as they have compatible lifetime and mass.
- Suppression in the entire $p_{\rm T}$, which is different dependence from (f_0/π)
- Can be explained by a weak strangeness enhancement for $f_0(980)!$

Nuclear modification factor, $Q_{\rm pPb}$

 pp spectrum from https://alice-publications.web.cern.ch/node/7410

- Stronger multiplicity dependence (suppression) for $f_0(980)$ in low p_T (< 4 GeV/c).
- Suppression disappears with increasing $p_{\rm T}$
- Confirmation of the re-scattering effect
- No Cronin peak in the intermediate $p_{\rm T}$

Nuclear modification factor, $Q_{\rm pPb}$

pp spectrum from https://alice-publications.web.cern.ch/node/7410 p-Pb 5.02 TeV V0A 0-20% / 60-100% ZNA Multiplicity Ratio of yields ALICE Work in progress 0-20% 40-60% 20-40% 1.5 p-Pb $\sqrt{s_{\text{NNN}}}$ = 5.02 TeV 60-80% $\mathbf{Q}_{\mathrm{pPb}}$ 16 14 Scaling Unc. 12 f_a(980) o Charged Hadron Q^{ch}_{apt}, PRC 91 064905 (2015) 1.5 10 $\boldsymbol{\varrho}_{pPb}$ Σ(1385) 0.5 K (892 2 2.5 3 35 5.5 6 p_, GeV/c 15 4 45 p_(GeV/c) 10 12 6 (GeV/c) 10 12

- Stronger multiplicity dependence (suppression) for $f_0(980)$ in low p_T (< 4 GeV/c).
- $\bullet\,$ Suppression disappears with increasing $p_{\rm T}$
- Confirmation of the re-scattering effect
- No Cronin peak even in the **high** $p_{\rm T} \leftrightarrow$ Different from baryons

イロト (日本 (日本 (日本)) 日 (つくつ)

Multi-quark particle yield

- STAR measured f_0/ρ to be 0.2 (STAR Collaboration, Nucl.Phys.A 715 (2003) 462-465)
- ρ yield is estimated to be 42 from statistical model \rightarrow f₀ yield is estimated to be 42 × 0.2 ~ 8
- Not to be pure and compact tetra-quark
- $\bullet\,$ Scaling the f_0 yield with the multiplicity:

$$Y_{\rm f_0}^{\rm pPb} = Y_{\rm f_0}^{\rm PbPb} \frac{\mathrm{d}N^{\rm ch}/\mathrm{d}\eta_{\rm pPb}}{\mathrm{d}N^{\rm ch}/\mathrm{d}\eta_{\rm PbPb}}$$

- $(dN^{ch}/d\eta_{pPb})/(dN^{ch}/d\eta_{PbPb}) = 0.01,$ $(dN^{ch}/d\eta_{pp})/(dN^{ch}/d\eta_{PbPb}) = 0.0025$
- $Y_{f_0}^{pPb} = 10 \times 0.01 = 0.1 \ (0.12 \text{ is measured by this work})$ $Y_{f_0}^{pp} = 10 \times 0.0025 = 0.025 \ (0.0385 \text{ is measured})$
- Favors $q\bar{q}$ assumption

	RHIC, Au–Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$	LHC, Pb–Pb, $\sqrt{s_{NN}} = 5.5 \text{ TeV}$
$q \bar{q}$	3.8	10
$s\bar{s}$	0.73	2.0
$q\bar{q}s\bar{s}$	0.1	0.28
$C_{\text{restructive}}$ for hoth colligions 0 1007		

Centrality for both collisions: 0-10%

16/21

Coalescence model in p–Pb collisions

• Hadronic volume size was scaled down with the charged-particle multiplicity:

 $A_{\rm pPb} = A_{\rm PbPb} \frac{\mathrm{d}N^{\rm ch}/\mathrm{d}\eta_{\rm pPb}}{\mathrm{d}N^{\rm ch}/\mathrm{d}\eta_{\rm PbPb}}$

• Finite size effect due to compatibility between volume size and deuteron size

• C.M. Ko et al. Physics Letters B 792 (2019) 132-137

- Simple coalescence model is nicely working in p–Pb collisions as well.
- The same approach was also applied to K^+K^- coalescence calculation \rightarrow The same approach is not applicable for f_0

$q\bar{q}$ with orbital angular momentum

- HADRON PROPERTIES FROM QCD SUM RULE, PHYSICS REPORTS 127, No. 1(1985) 1-97
- In quark model, scalar meson can be expressed as $q\bar{q}$ with L = 1 to make parity positive.
- In equation (4.50) of the physics report cited above, $m_{n\bar{n}} = 1.00$ GeV and $m_{s\bar{s}} = 1.35$ GeV
- 500 MeV easily came from L = 1
 - $a_1(1260) \rho(770) = 484 \text{ MeV}, \chi_{c1}(3511) J/\Phi(3097) = 414 \text{ MeV}$
- $\bullet\,$ Could be mixed states of tetra-quark and $q\bar{q}$

Suggestion of tetra-quark structure

FIG. 9. The quark content of the cryptoexotic nonet. (a) the $\frac{3}{2}$ formed from two quarks; (b) the 3 formed from two antiquarks; (c) the (magically mixed) nonet formed from the direct product of (a) and (b).

- Tetra-quark picture was firstly suggested by: Phys. Rev. D 15, 267 (1977)
- Introduced to explain inverted masses compared with vector meson.
 - Vector meson: $m_{\text{nonet}} > m_{|S|=1} > m_{|S|=0}$ (same for pseudoscalar)
 - Scalar meson: $m_{|S|=0} > m_{|S|=1} > m_{\text{nonet}}$,

Nuclear modification factor in Pb–Pb collisions

- $p_{\rm T}$ bins and signal extraction were updated
- https://indico.cern.ch/event/1058961/

Summary

- $f_0(980)$ in pp
 - Preliminary results, which had been approved in QM 2018, were updated.
- $f_0(980)$ in p–Pb
 - Particle yield ratio of $f_0(980)$ to charged pions is decreasing with the multiplicity at low p_T
 - Measurement of the re-scattering effect from the scalar meson for the first time
 - Particle yield ratio of $f_0(980)$ to K^{*0} is decreasing with the multiplicity at the entire p_T
 - Weak $p_{\rm T}$ dependence: The re-scattering effect would be compatible between f_0 and K^{*0}
 - Suppression at the entire $p_{\rm T}$: Weak strangeness enhancement for $f_0(980)$
 - Nuclear modification factor $(Q_{\rm pPb})$ of $f_0(980)$ is measured in different multiplicity classes.
 - $Q_{\rm pPb}$ of $f_0(980)$ is much suppressed than $Q_{\rm pPb}$ of charged hadrons with the multiplicity at low $p_{\rm T}$: Re-scattering effect
 - \bar{Q}_{pPb} of $f_0(980)$ does not exhibit Cronin peak in high-multiplicity events: The number of (boosted) constituent quarks is less than baryons
- $f_0(980)$ in Pb–Pb
 - $\bullet~p_{\rm T}$ bins and signal extraction were updated and reported.
 - Further analysis for $f_0(980) v_2$ is ongoing.

BACKUP

22/21