Status of multiplicity dependent Ξ_c^{0} analysis

* Chong Kim PNU-NPL / Inha University

KoALICE workshop

Jan. 5, 2022

<u>Outline</u>

1. Additional activity in 2021

- Contribution to the Luminosity group

2. Multiplicity dependent Ξ_c^0 analysis

- Recap
- Current status

3. Schedule for 2022

<u>2021 Activity</u> Contribution to the Luminosity group

• vdM (van der Meer) analysis

- Goal: estimation of V0/T0 cross-sections, for LHC Run 2 pp \sqrt{s} = 13 TeV (2016-2018)
- Main tasks:
 - a. Cleanup/Debug/Update of existing libraries for vdM analysis
 - b. Estimation of V0/T0 cross-section and its error

- Results and Achievements:

- a. Task finished successfully (ALICE public note: link)
- b. Conferences talks: HADRON2021 (oral) and PANIC2021 (poster)

pp Vs = 13 TeV ALICE-PUBLIC-2021-005

$\underline{\Xi}_{c}^{0}$ Analysis Recap (1 of 3)

- Multiplicity dependent Ξ_c⁰ analysis
 - $\Xi_c^{0} \rightarrow e\Xi$ decay channel (BR 1.8 ± 1.2 %)
 - Based on the analysis by J.Seo
 - a. Share the same:
 - a-1. Analysis strategy
 - a-2. Samples (both data and MC)
 - a-3. Online event selection (AliAnalysisTask)
 - b. <u>Differences</u>:
 - b-1. Further classification by HM trigger and VOM multiplicity
 - (e.g. MB inclusive vs. MB + [0, 100], MB + [0.1, 30], MB + [30, 100], and HMV0 + [0, 0.1])
 - b-2. Use my own offline selection and analysis codes (based on Jinjoo's code, but wrote by myself again)
 - b-3. Final observable: cross-section (of Ξ_c^0 , Jinjoo) vs. baryon-to-meson ratio (Ξ_c^0/D^0 , CKim)
 - Continual update & Exchange feedback via internal PNU Inha weekly analysis meeting

Analyzer	JSeo	SHLim/CKim	JBok
Dataset	RUN2 (2016 – 2018)		
Collision system	p + p		p + Pb
√s (TeV)	13		5.02
Triggers	MB	MB, HM	MB
Multiplicity	Ν	Y	Y
Status	Done	Ongoing	

ALICE D2H (Mar. 5, 2021)

$\underline{\Xi}_{c}^{0}$ Analysis Recap (2 of 3)

KoALICE workshop (Feb. 17, 2021)

- Since the last report
 - Drop HMSPD configuration: poor statistics (main), no uniqueness compared to HMV0
 - Major comments received from D2H:
 - a. 1-to-1 direct comparison to Jinjoo's "MB inclusive xSec" result (next page)
 - b. Investigate drop-like behavior of "HMV0 + [0, 0.1]" around 1 < pT < 2:

 \rightarrow It turns out the reason is BG abundance (study by Prof. Lim) (* backup)

• Comparison to Jinjoo's result

- Conditions:

- a. Target: MB inclusive cross-section
- b. Same: sample (train level), cuts, and analysis routines
- c. Different: offline analysis codes and a few minor cuts
- Proof of general sanity of the current analysis

$\underline{\Xi}_{c}^{0}$ Analysis Current status

Up-to-date results

- a. Left: yields (normalized by # of events, w/o V0 xSec) for Ξ_c^0 (this analysis) and D⁰ (from L_c / D⁰ analysis)
- b. Right: baryon-to-meson (Ξ_c^0 / D^0) ratio, calculated from the left

Current analysis status

a. All analysis routines are prepared and a systematic error study is underway

* It seems intensive study is needed for largely fluctuating points before finalization...

b. Currently writing the analysis note

Schedule for 2022

• Schedule of my interest

- QM22 (Ξ_c^0 analysis, poster)
 - a. Jan. 10: analysis note due to the PWGHF-D2H conveners (personal)
 - Jan. 24: abstract notifications by QM organizers (official by PWGHF-D2H, link)
 - b. Feb. 07-11: HF preview (official)
 - Feb. 14-22: ALICE preview (official)
 - c. Mar. 07-11: HF approval (official)
 - Mar. 14: ALICE approval (official)
 - d. Apr. 04-10: QM2022 (official)

- Finalization of the Ξ_c^0 analysis

- a. Finalize the results during the 2nd half of 2022
- b. Publish (at least reach the draft preparation level) in 2022

ALICE service works

No solid plan yet – perhaps a further contribution to the Luminosity group?

<u>Summary</u>

• 2021 Activities

- vdM analysis for Luminosity group as service work for ALICE collaboration
- Multiplicity dependent Ξ_c^0 analysis
- Multiplicity dependent Ξ_c⁰ analysis
 - Rather slow progress the crosscheck took more time than expected
 (I didn't mention all the technical details in this slide)
 - Most of analysis steps are prepared and under systematic study, but
 - a. Currently writing an analysis note (clock's ticking...)
 - b. Need to modify some routines: in general, they're designed for MB inclusive
 - c. Require intensive study for some heavily fluctuating data points
 - Finalization plan: plan to finish this analysis within this year (2022)

Backup Analysis strategy

• Analysis strategy

- $\begin{aligned} &- \quad \Xi_c^0 \text{ semi-leptonic decay mode (BR 1.8 \pm 1.2 (\%))} \\ & \quad \Xi_c^0 \rightarrow e^+ \Xi^- v_e \rightarrow e^+ (\pi^- \wedge) v_e \rightarrow e^+ (\pi^- (p \pi^-)) v_e \text{ or its charge conjugate, i.e.,} \\ & \quad \Xi_c^0 \rightarrow e^- \Xi^+ v_e \rightarrow e^- (\pi^+ \wedge) v_e \rightarrow e^- (\pi^+ (p \pi^-)) v_e \end{aligned}$
- Cross-section analysis steps
 - 1. Get candidates of e and Ξ
 - 2. Get distributions of:
 - 2 a. RS (right sign = unlike sign)
 - 2 b. WS (wrong sign = like sign)
 - 2 c. Raw signal by RS WS
 - 3. Correct prefilter efficiency
 - 4. Correct over-subtracted $\Xi_b \rightarrow \Xi_c^0$ yields * Valid only for MB + [0, 100]
 - 5. Convert " $e \Xi$ pair's p_T " to " $\Xi_c^0 p_T$ " by unfolding
 - 6. Correct acceptance x efficiency
 - 7. Estimate cross-section
 - 8. Assign systematic error

Backup Timeline

Milestones before & after March 2021

– Before March 2021:

AliAnalysisTask update:

a. Accept events in the "OR" condition of multiple triggers (MB, HMVO, and HMSPD)b. Added variables on the ROOT Tree for offline analysis: trigger, multiplicity, etc

- WDK (weak decay finder) update on AODs
- **LEGO train run (hereafter Feb. train)** \rightarrow Jinjoo's final report and my Mar. 5 update

– After March 2021:

AliAnalysisTask update:

a. Added multiple ANC objects for each trig + multiplicity (e.g., MB + [0, 100])

- b. Added variable for offline analysis: INEL>0
- LEGO train run (hereafter May train)
- Pileup cut update (fEvt->IsPileupFromSPD(...) → fEvtCuts ->IsEventRejectedDueToPileup())
- LEGO train run (hereafter Nov. train) → current up-to-date train output
- Crosscheck with Jinjoo (MB inclusive cross-section)

Backup HMV0 point drop

- Drop like behavior of 1 < p_T < 2 in HMV0 + [0, 0.1] / 1 of 3
 - Mass distribution by RS or WS
 - a. It's difficult to expect plenty excess yields (RS WS) in $1 < p_T < 2$, unlike the other bins
 - b. BG dominant in mass > 2 GeV : setting a tight cut might helpful (* standard analysis cut: 1.3 < M_{eXi} < 2.5)

Backup HMV0 point drop

Drop like behavior of 1 < p_T < 2 in HMV0 + [0, 0.1] / 2 of 3

Backup HMV0 point drop

- Drop like behavior of 1 < p_T < 2 in HMV0 + [0, 0.1] / 3 of 3
 - Scan opening angle w/ fixed M_{exi} (* <u>Backup</u>)
 - a. The points are relatively stable vs. opening angle, except $1 < p_T < 2$ ($2 < p_T < 3$ either, in $M_{eXi} < 2.5$)
 - b. $1 < p_T < 2$ also settles down with tighter cut (left to right columns), but not sure if this is a valid approach

Backup eXi pair mass distributions, MB

Backup eXi pair opening angle distributions, MB

Quote from Ξ_c^0 analysis note (<u>link</u>)

Fig. D.1: The opening angle distributions of $e\Xi$ pairs.