Study On The Flow Of The Identified Particles

In p-Pb Collisions At $\sqrt{s_{NN}}$ = 5.02 TeV

SuJeong Ji

Pusan National University

su-jeong.ji@cern.ch

2022 koALICE workshop

<u>Outline</u>

1. Introduction

- a. Particle correlations in heavy ion collisions
- b. Two-particle correlations in small systems

2. Analysis Method

- a. Data set, event selection
- b. Correlation function
- c. Template fit method

3. Results

- a. v_2 , v_3 vs p_T (centrality)
- b. Discussion

4. Summary & Plan

<u>1-a. Introduction</u> Particle correlations in heavy ion collisions

- Almond shape of QGP is formed
 in off-centre heavy-ion collision
 due to the the initial collision
 geometry
- More energetic hadrons squirt out in the plane of the interaction causing that emerge reach the detector in an elliptical distribution
 - -> Angular correlation of the particles is seen

<u>1-b. Introduction</u> Two-particle correlations in small systems

Phys. Rev. C. 96, 024908 (2017)

Phys. Lett. B. 718 (2013) 795-814

- Long-range azimuthal correlations has been studied in small collision systems.
- The origin of such collective behaviour in small systems is not clear yet.
 => More experimental measurements for different particles and/or collision systems can help to improve the current understanding.

<u>1-b. Introduction</u> Two-particle correlations in small systems

- v_2 and v_3 were measured using the template fit method in 0-0.1% pp collisions(left) in ALICE.
- We would like to apply the template fit method to measure v_n of the identified particles in p-Pb collisions with Run2 data (about 700M events were used).

2-a. Analysis Method Data set, event selection

ALICE Run2 Detector

- Data set
 - 2016 p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV
- Event Selection
 - Trigger selection : min-bias trigger
 - |z_{vtx}| < 10 cm
 - V0A Centrality

٠

- Particle Identification
 - $\sqrt{N_{\sigma,PID}^2} = \sqrt{N_{\sigma,TPC}^2 + N_{\sigma,TOF}^2} < 3$
 - Smaller $N_{\sigma,PID}$ is chosen when $N_{\sigma,PID}$ for two or more species are less than 3

2-a. Analysis Method

Correlation function ($|\eta| < 0.9$, VOA (2.8< $\eta < 5.1$))

$$\frac{1}{N_{trig}} \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi} = B(0,0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

- 0.3 < p_{T, assoc} < 6.0 GeV/c,
 0.5 < p_{T, trig} < 6.0 GeV/c .
- Efficiency corrected
- High multiplicity
 - : Centrality 0-10%, 10-40%
- Low multiplicity
 - : Centrality 60-100%

<u>2-b. Analysis Method</u> Template fit method ($|\eta| < 0.9$, VOA (2.8< $\eta < 5.1$)

- $\frac{1}{N_{trig}}\frac{d^2N^{pair}}{d\Delta\eta d\Delta\phi} = B(0,0)\frac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)}$
- $Y^{templ}(\Delta \phi)$

 $= Y^{ridge}(\Delta \phi) + FY^{periph}(\Delta \phi)$

• $Y^{ridge}(\Delta \phi)$

$$= G\left(1 + \sum_{n=2}^{4} 2v_{n,n}\cos(n\Delta\phi)\right)$$

•
$$v_{n,n}^{\pi-h} = v_n^{\pi} \times v_n^h$$

•
$$v_{n,n}^{h-h} = v_n^h \times v_n^h = \left(v_n^h\right)^2$$

•
$$v_n^{\pi} = v_{n,n}^{\pi-h} / \sqrt{v_{n,n}^{h-h}}$$

- 1D Projection to $\Delta \phi$ direction in long-range (1.0<| $\Delta \eta$ |<1.8)
- Template fitting to subtract the non-flow yield

- v₂ and v₃ as function of p_T in two different multiplicity bins.
- Clear mass ordering is seen for v₂ in both multiplicity bins.
- $v_2^p < v_2^\pi$ (p_T < 2.5 GeV/c), $v_2^\pi < v_2^p$ (p_T > 2.5 GeV/c).
- Unlike v_2 as function of p_T , Similar p_T dependence is seen in two different multiplicity bins.
- Large statistical uncertainties are seen for v₃.

<u>3-a. Results</u> v_2 , v_3 (vs multiplicity)

- v₂ and v₃ as function of centrality in two different p_T bins.
 - $v_2^p < v_2^\pi$ (p_T < 2.5 GeV/c), $v_2^\pi < v_2^p$ (p_T > 2.5 GeV/c).
- $v_3^p < v_3^\pi$ (p_T < 2.5 GeV/c), the uncertainties in p_T > 2.5 GeV/c are too large.

- v₂ of pion, kaon and proton using the template fit method are compared with the ones using the peripheral subtraction method.
- Consistent v_2 for pion and kaon is observed whilst slightly different v_2 for proton is seen in $p_T < 1.5$ GeV/c.

PRC 97, 064904 (2018)

- v₂ of pion and proton in p-Pb 5.02 TeV are compared with the PHENIX p+Au and ³He+Au 200 GeV results.
- The PHENIX results show the mass splitting in $p_T \sim 1.5$ GeV/c, whilst The ALICE results is in $p_T \sim 2.5$ GeV/c.

PRC 97, 064904 (2018)

- v₂ of pion and proton in p-Pb 5.02 TeV are compared with the PHENIX p+Au and ³He+Au
 200 GeV results.
- The PHENIX results show the mass splitting in $p_T \sim 1.5$ GeV/c, whilst The ALICE results is in $p_T \sim 2.5$ GeV/c.
- In terms of the value of v_2 , the ALICE results looks similar with the PHENIX p+Au results.

PRC 97, 064904 (2018)

- v₂ of pion and proton in p-Pb 5.02 TeV are compared with the PHENIX p+Au and ³He+Au
 200 GeV results.
- The PHENIX results show the mass splitting in $p_T \sim 1.5$ GeV/c, whilst The ALICE results is in $p_T \sim 2.5$ GeV/c.
- In terms of the trend of v_2 , the ALICE results looks similar with the PHENIX ³He+Au results.

<u>3-b. Results</u> n_q scaled v₂ (vs KE_T)

- n_q scaled v₂ as function of transverse kinetic energy.
- Quite Identical trend is observed for all particles under 1 GeV, however proton shows different trend in over 1 GeV.

4. Summary

- Initial look on v_2 , v_3 as function of p_T (centrality) of identified particles using template fit method using ALICE p-Pb 5.02 TeV data in long-range.
- $v_2^p < v_2^{\pi}$ (p_T < 2.5 GeV/c), $v_2^{\pi} < v_2^p$ (p_T > 2.5 GeV/c).
- v₂ shows decreasing trend with the decreasing centrality.
- The trend of v₂ seems similar to the previous ALICE and PHENIX analyses.

<u>5. Plan</u>

- Analysing pass2 data
- Using Bayesian approach for the particle identification

Thank you!

Back-up

<u>2-b. Analysis Method</u> Template fit method (VOA (2.8< η <5.1))

- Closure test is done using p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV PYTHIA8 events in long-range. ATALS acceptance (left), ALICE acceptance(right).
- v_{22} is close to zero in all p_T bins in both ATLAS and ALICE acceptance apart from when the long-range is $0.8 < |\Delta \eta| < 1.8$ and $0.4 < |\Delta \eta| < 1.8$.
- This can be understood that the template fit method works in the long-range of $1.0 < |\Delta \eta| < 1.8$.