

ALICE

Resonance production in ALICE

Jihye Song **N**uclear **P**hysics **L**ab Pusan National University

> KoALICE workshop Jan. 4-7, 2022

Snowy winter at CERN (near the Council Chamber)

https://cds.cern.ch/record/40697 © 1964-2021 CERN

Outline

- A brief greeting
- What I have been doing
- Resonance production in ALICE
 - motivation
 - ongoing analysis
 - interests in Run3
- Summary & Outlook

Jihye Song

A brief greeting

Good to see you and glad to perform the research as KoALICE member

Worked at department of Physics in University of Houston Started do a research at Nuclear Physics Lab in PNU from Nov. 1

KoALICE workshop

Jihye Song

What I have been doing

Guide students

3

- strange-pentaquark (1670, 1870, 2065, 2255, 2455)
- strange multi-quark states
- strange resonance (1820)

- + event by event multiplicity fluctuation
- + flow measurements
- + open charm measurement
- + O2 in ALICE
- Work as resonance PAG convener (2020 Jan. 1) (published, submitted)
 - PLB 802 (2020) 135225
 - Eur. Phys. J. C 80 (2020) 160
 - PLB 807 (2020) 135501
 - Phys. Rev. C 102 (2020) 024912
 - arXiv:2105.05760
 - arXiv:2106.13113
 - arXiv:2110.10042

The task was tough than I expected... still,...

Jihye Song

KoALICE workshop

What I have been doing

Work as resonance PAG convener (IRC Review / preparation)

- Strangeness enhancement in Jet and Medium via ϕ
- Multiplicity & rapidity dependence of K*(892)^ and ϕ
- f₀(980) in pp at $\sqrt{s} = 5.02$ TeV
- $\Sigma(1385)^{\pm}$ in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- Σ 0 production in pp at $\sqrt{s} = 7$ TeV

(Alexander Borissov, Jihye Song, Prof. In-Kwon Yoo, Angela Badala)

- $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ in pp at $\sqrt{s} = 13$ TeV

(PC chair(me), Bong-Hwi, Prof. In-Kwon Yoo, Prof. BeomKyu Kim, Enrico Fragiacomo)

- + f0(980) in p-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- + Λ^* in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- + Λ^* in pp at $\sqrt{s} = 5.02$ and 13 TeV
- + Charged K*(892) in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV
- + Charged K*(892) in pp at $\sqrt{s} = 13$ TeV vs. Spherocity

Jihye Song

4

KoALICE workshop

KoALICE workshop

Lifetime(fm/c): **ρ(1.3)** < K*⁰(4.2) < Σ*(5.0-5.5) < Λ*(12.6) < Ξ*(21.7) < φ(46.2)

Jihye Song

5

	quark content	Decay modes	B.R.		quark content	Decay modes	B.R.
ρ(770) ⁰	(uū+dd) √2	π+π-	100	Σ(1385) +	uus	Λπ+	87
K*(892) ⁰	ds	K+π-	66.6	Σ(1385) ⁻	dds	Λπ⁻	87
K*(892)±	us	$K^0{}_s\pi^+$	33.3	Λ(1520)	uds	pK⁻	22.5
f ₀ (980), f ₂ (1270)	unknown	π+π-	46(84)	Ξ(1530) ⁰	USS	Ξ-π+	66.7
K* _{0,2} (1430) ⁰	ds	K+π-	93(49.4)	Ξ(1820) ∓,0	dss (uss)	ΛK∓ (ΛK ⁰ s)	unknown
ϕ (1020)	ss	K+K-	48.9	Ω <mark>(2012)</mark> ∓	SSS	Ξ∓K⁰s	unknown

Phys. Lett. B 509, 239 (2001) Phys. Lett. B 530. 81 (2002) PLB 802 (2020) 135225

6

Why Resonances

Resonances have different short lifetimes similar to Hadronic phase

- allows the study of properties of hadronic phase in terms of regeneration and re-scattering effects
- estimate the duration between chemical and kinetic freeze-out

Jihye Song

Why Resonances

Same quark content as the ground state particles, but different masses

 help to understand strangeness production by factorizing mass and
 strangeness related effects

Why Resonances

Resonance production contributes

In medium energy loss + CNM effects

8

 Calculation from FASTSUM Collaboration shows potential parity doubling

- signature of chiral symmetry restoration in heavyion collisions

- expected signal: mass shift, width broadening or change in yield ratio between $\Xi(1820)$ and $\Xi(1530)$

10.1051/epjconf/201817114005 KoALICE workshop

PhysRevLett.125.012301 (2020) KoALICE workshop

 Large angular momentum [1] and intense magnetic field [2] is expected in initial stage of heavy-ion collisions

- spin alignment of vector meson could occur

[1] F. Becattini et al., Phys.Rev.C 77 (2008) 024906
[2] D. E. Kharzeev et al., Nucl.Phys.A 803 (2008) 227

Jihye Song

9

X

Resonance production contributes

Spin alignment in Production plane K^{*0} Production plane heavy-ion collisions 0.5 0.5 $.. \rho_{_{00}} = 1/3$ 0.4 0.3 0.2 0.2 Pb–Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ • $0.5 \le p_{\perp} < 0.8 \; (\text{GeV}/c)$ • 0.4 ≤ p_{τ} < 1.2 (GeV/c) 0.1 L or B $-3.0 \le p_{-} < 5.0 \, (\text{GeV}/c)$ $43.0 \le p_{-} < 5.0 \, (\text{GeV}/c)$ ρ_{00} Event plane ALICE Event plane 0.5 $K^{*0} \bullet 0.8 \le p_{\tau} < 1.2 \text{ (GeV/c)}$ lyl < 0.5 $43.0 \le p_{\perp}' < 5.0 \,(\text{GeV}/c)$ 0.4 0.4 0.3 0.3 0.2 0.2 $\bullet 0.5 \le p_{_{\rm T}} < 0.7 \; ({\rm GeV}/c)$ 0.1 0.1 $43.0 \le p_{\pm}^{1} < 5.0 \text{ (GeV/c)}$ 100 200 300 100 200 300 $\langle N_{part} \rangle$ ζN_{nar} ALI-PUB-337924

0.3 0. 0.2 0.2 Pb–Pb, $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV • 0.5 ≤ p_{τ} < 0.8 (GeV/c) • 0.4 ≤ p_{τ} < 1.2 (GeV/c) \sim^8 0.5 - Production plane 0.1 (C) $-3.0 \le p_{-} < 5.0 (\text{GeV}/c)$ Production plane $+3.0 \le p'_{-} < 5.0 (\text{GeV}/c)$ K^{*0} ρ_{00} ALICE Event plane Event plane 0.5

 $.. \rho_{_{00}} = 1/3$

|y| < 0.5

300

С

 $\langle N_{part} \rangle$

 $\bullet 0.5 \leq p_{_{\rm T}} < 0.7 \; ({\rm GeV}/c)$

 $43.0 \le p_{\pm}^{1} < 5.0 \text{ (GeV/c)}$

200

100

Why Resonances

Production plane

Resonance production contributes

Spin alignment in

heavy-ion collisions

L or B

9

[2]

Ji

$$rac{\mathrm{d}N}{\mathrm{d}(\cos\theta^*)} \propto (1-
ho_{00}) + (3
ho_{00}-1)\cos^2\theta^*$$
 se magneti

Production plane

 $K^{*0} \bullet 0.8 \le p_{\tau} < 1.2 \text{ (GeV/c)}$

100

 $3.0 \le p_{\perp}' < 5.0 \, (\text{GeV}/c)$

200

300

 $\langle N_{\rm part} \rangle$

0

0.5

0.4

0.3

0.2

0.1

spin alignment of vector meson could occur

ρ₀₀: Element of spin density matrix [1] if $\rho_{00} = 1/3$, No spin alignment

PhysRevLett.125.012301 (2020) KoALICE workshop

Reconstruction of E(1820)

In Signal extraction(pp): Ξ(1820)⁺

Minimum-bias events (1.0 < p_T < 20 GeV/c) Inv. mass vs. Multiplicity

• Invariant mass distribution in different multiplicity classes

12 Signal extraction(pp): Ξ(1820)[∓]

Invariant mass [GeV/ c^2]

Invariant mass [GeV/c²]

Signal: Voigtian fit (free mass, fix σ , free Γ)

Invariant mass [GeV/c²]

3000

2000

1000

1200

600

• Invariant mass distribution in different p_T bin with pp

Mass & Width of Ξ(1820)[∓] Mean Vs. <dN_{cb}/dη> Width Vs. $<dN_{cb}/d\eta>$ 1826 Mean (MeV/c²) E[∓](1820) pp@13 TeV Width (MeV/c² 50 45 (1820) pPb@5.02 TeV 1824 E[‡](1820) PbPb@5.02 Te\ (820) PDG width 1822 ^{*}(1820) PDG width erro 1820 E^{*}(1820) pp@13 TeV 1818 35 E[‡](1820) pPb@5.02 TeV E[∓](1820) PbPb@5.02 TeV

30

25

20

15 E

Ŧ

10

• Mass & width vs. multiplicity

10²

• 2.22σ difference between pp 100% and Pb-Pb 0-10% for width

^{10³}<dN_{ch}/dη>

- might be a signal of chiral symmetry restoration
- need to do a more precise measurement

Jihye Song

1816

1814

1812

1810

1808

E[‡](1820) PDG Mear

10

E^{[∓](1820) PDG Mean error}

KoALICE workshop

10²

^{10³}<dN_{ch}/dη>

Reconstruction of $\Xi(1820)$ +

Spectrum is obtained with pp @ 13 TeV data sample with HM trigger

Jihye Song

KoALICE workshop

$_{14}$ Reconstruction of $\Xi(1820)^{\mp}$

- Spectrum is obtained with pp @ 13 TeV data sample with HM trigger
- **Jihye Song**

KoALICE workshop

 p_{τ} (GeV/c)

Higher mass resonances

Ω(2012)[∓]

- Could contribute to the study of strangeness production
- attempt to study of parity doubling for Ω(2012)(3/2-) and ground-state Ω(3/2+)

Jihye Sòng

15

Challenge to separate two resonance states - Currently mass and width of K*₀ have larger uncertainties. The measurement of K*₀ could help to reduce them K₀* K₂*

Mass [MeV/c ²]	1425±50	1432±1.5
Width [MeV/c ²]	270±80	109±5

16 Higher mass resonances

KoALICE workshop

Table 1: K^+K^- resonances in the region $m_{f_2'} \pm 3\Gamma_{f_2'}$

		$f_2(1270)$	$a_2(1320)$	$f_0(1500)$	$f_2'(1525)$	<i>ρ</i> ₃ (1690)	$a_2(1700)$
t ² (1525)	Γ (MeV/c)	186.7 ± 2.5	107 ± 5	112 ± 9	86 ± 5	161 ± 10	258 ± 40
	BR(%)	4.6	4.9	8.5	87.6	1.6	1.9

- Other K+K⁻ resonance: 10 times smaller BR and larger width than $f_2(1525)$ - will be difficult to rectangle f0(1500) and f'2(1525) (close mass and width)

Signal extraction $1.25 < M_{KK} < 1.75 \text{ GeV/}c^2$

- Signal is promising with LHC16kl data sample (~ 76M events)

- Q. State belongs to a system of mesons with hidden strangeness?

Jihye Song

DOI: <u>10.1134/1.568160</u>

Summary & outlook

- Hadronic resonances are valuable probes to study the properties of hadronic phase and strangeness production (+chiral symmetry restoration, in medium energy loss, spin alignment, flow, etc.)
- E(1820) has been analyzed with pp, p-Pb and Pb-Pb data sample
- Measurements of higher mass resonances are very interesting with RUN3 data

- $\Xi(1820)$ and $\Omega(2012)$ can contribute to study chirality and strangeness enhancement

- signal extraction of $K^*_{0,2}(1430)$ and $f'_2(1525)$ mesons are challenging but might be able to analyze with new data sample