

Design activities towards stitched sensor

Geunhee Hong

Yonsei University

20220106 | KoALICE National Workshop

Outline

• Introduction

- ITS3 detector concept
- ITS3 timeline

• MLR1

- Chip production
- TTS Measurement
- ER1
 - MOSS Monolithic Stitched Sensor
 - Digital pixel implementation
- Next generation sensor design for LS3

Introduction

"Technical Design Report for the Upgrade of the ALICE Inner Tracking". ALICE Collaboration, B. Abelev et al. System. J. Phys. G 41, 087002 (2014).

https://indico.ph.liv.ac.uk/event/2/contributions/144/attachments/94/125/MBuckland_ALICE_HEPXma sMeeting.pdf

ITS3 detector concept

- The inner barrel in ITS2 is ultra-light but rather packed and irregular
- circuit board (power&data) / mechanical support / water cooling
- \rightarrow Integrating on chip / Rolling Si Wafer / power consumption below 20mW/cm²

ITS3 detector concept

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)
Technology node	180 nm	65 nm
Silicon thickness	50 μm	20-40 µm
Pixel size	27 x 29 μm	O(10 x 10 µm)
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm
Front-end pulse duration	~ 5 µs	~ 200 ns
Time resolution	$\sim 1 \ \mu s$	< 100 ns (option: <10ns)
Max particle fluence	100 MHz/cm^2	100 MHz/cm^2
Max particle readout rate	10 MHz/cm^2	100 MHz/cm^2
Power Consumption	40 mW/cm^2	< 20 mW/cm ² (pixel matrix)
Detection efficiency	> 99%	> 99%
Fake hit rate	< 10 ⁻⁷ event/pixel	< 10 ⁻⁷ event/pixel
NIEL radiation tolerance	$\sim 3 \text{ x } 10^{13} \text{ 1 MeV } n_{eq}/cm^2$	10^{14} 1 MeV n_{eq}/cm^2
TID radiation tolerance	3 MRad	10 MRad

https://indico.cern.ch/event/813597/contributions/3727803/attachments/1989307/3315951/2020-02-18_Trento2020_ITS3.pdf

• Chip size is traditionally limited by CMOS manufacturing ("reticle size")

- typical sizes of few cm²
- modules are tiled with chips connected to a flexible printed circuit board
- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - actively used in industry
 - a 300 mm wafer can house a chip to equip a full half-layer

https://indico.cern.ch/event/813597/contributions/3727803/attachments/1989307/3315951/2020-02-18_Trento2020_ITS3.pdf

ITS3 detector concept

"Technical Design Report for the Upgrade of the ALICE Inner Tracking". ALICE Collaboration, B. Abelev et al. System. J. Phys. G 41, 087002 (2014).

https://indico.ph.liv.ac.uk/event/2/contributions/144/attachments/94/125/MBuckland_ALICE_HEPXma sMeeting.pdf

• Key ingredients:

- 300 mm wafer-scale chips, fabricated using stitching
- thinned down to 20-40 μ m (0.02-0.04% X0), making them flexible
- bent to the target radii
- mechanically hold in place by carbon foam ribs
- Key benefits:
 - extremely low material budget: 0.02-0.04% X0 (beampipe: 500 μm Be: 0.14% X0)
 - homogeneous material distribution: essentially zero systematic error from material distribution

https://indico.cern.ch/event/974424/contributions/4158313/attachments/2185864/3693273/2021-02-08_DAQFEET-ITS3sensor.pdf 20220106 | KoALICE National Workshop

ITS3 timeline main milestones

TDR Milestone Description Production^a Date **NB: does include** single, earlier **Technology test structures** old MPW2, too submission single pixels, transistors, small memory cell array MPW Q4 2019 for studying the radiation hardness of the technology Pixel test vehicle ER2 ER3 2 MPW Q3 2020 Sensor MLR2 MLR1 ER1 optimization of pixel and diode geometries final chip. (submissions) ful cale/ 65hm tech. test 65nm pixel opt. build iucks Large area prototype ching et. 3 basic blocks: pixel matrix, periphery, output serial links ER Q4 2021 exercising of stitching different parts 300mm 300mm 65nm **Full-scale prototype** Thinning -scale ER Q4 2022 prototype of final chip with all functionality ALPIDE chips prototype dummy prototype Bending wafers wafers > **Final Chip** 5 ER Q4 2023 possible minor adjustments wrt milestone 4 ^a MPW: multi-project wafer run, ER: engineering run EM Mechanics FM BM QM half-barre Cooling material selection beam pipe execution of market Beampipe tender pre-installation survey qualification contract purchase samples 2019 2020 2021 2022 2023 2024 2025 2026 2027 JEMAMJJASONDJEMAMJJJASONDJEMAMJJASONDJEMAMJJASONDJEMAMJJASONDJEMAMJJASONDJEMAMJJASONDJEMAMJJASONDJEMAMJJASONDJEMAMJJASONDJEMAMJZASONDJEMAMJZASONDJEMAMJZASONDJEMAMJZASONDJEMAMJZASONDJEMAMJZASONDJEMAMJZASONDJEMAMJZASONDJEMAMJZ Long Shutdown 3 (LS3) Long Shutdown 2 (LS2) Run 3 Tight schedule, but we are on track!

MLR: multiple layer per reticle, ER: engineering run,

BM: breadboard module, EM: engineering module, QM: qualification module, FM: final module

Magnus Mager (CERN) | MAPS R&D in 65 nm | LCWS2021 | 18.03.2021 | 12

MLR1 production

- GDS submission in Dec 2020
- Chip delivery in July 2021

65 nm prototypes, MLR1

transistor test structures

- Compatible with existing test system based on probe card
- Tests have already started
 - no apparent showstoppers so far
 - detailed analysis ongoing and in discussion with foundry

Very encouraging results, clears first milestone of 65 nm verification

https://indico.cern.ch/event/1071914/

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 49

Stitched sensor development

MOSS Monolithic Stitched Sensor Prototype

- Implement a large sensor abutting identical but functionally independent sub-units
 - Repeated Sensor Unit, Endcap Left, Endcap Right
 - Stitching used to connect metal traces for power distribution and long range on-chip interconnect busses for control and data readout

https://indico.cern.ch/event/1091910/

Concept for Pixels Readout in a Region

M4

Global Strobe In-Pixel Latch

Row OR output line

³ Selection of row (token)

Skip rows with no hits

Column out line

Pixels of the selected row drive the column line

Digital pixel logic

Signal Regeneration

Post-layout extraction simulation results

PWELL=0 V

Typical corner (1.2V, typical process, 27degrees)

Output delay

(FE output over Vth 0.6V \rightarrow ROW_PIXEL_OUT) : 24 ns (ROW_PIXEL_OUT \rightarrow ROW_OR) : 1.022ns (ROW_OR \rightarrow ROW_OR) : 0.612ns

- STROBE group-to-group delay 0.719ns
- STROBE regeneration dynamic energy 84.1 fJ
- SELECT_ROW group-to-group delay 1.21ns
- Pixel digital
 Dynamic energy 2.32pJ
 Static energy 16.2fJ for 5us
 Static leakage current 2.71nA
- Group digital
 Static energy 3.65pJ for 5us
 Static leakage current 608nA

Pre-mock submission – Dec 2021

KoALICE

https://indico.cern.ch/event/1104620/

Next generation sensor design for LS3

- Good timing (10's of *ps*?)
 - Avalanche photodiode
 - Digital operation without the analog front end
- High spatial resolution
 - Pixel detector
- Low power consumption
 - Low digital activity (~ low occupancy)
 - Digital periphery with the sparcified readout
- Simple operation
 - Built-in tolerance in the APD operation

Digital pixel coupled with low gain APD

• Thick epitaxial layer of about 25 μ m for charge collection

 $Q_{Gen} = \mathbf{0.1} \cdot 50e/\mu m \cdot 25\mu m = \mathbf{0.1} \cdot 1250e = 125e = 2.0 \cdot 10^{-17}C$

• Low gain APD (m = 50)

 $Q_{Col} = \boldsymbol{m} \cdot Q_{Gen} = 1.0 \cdot 10^{-15} C$

Collection electrode with small capacitance

 $C = 3.2 \, fF$

• 1.2(V) LVCMOS digital pixel operation

$$V_{Sig} = \frac{Q_{Col}}{C} = 0.313 \, V > V_{th} = 0.3 \, V$$

Snoeys, W. "CMOS monolithic active pixel sensors for high energy physics." Nuclear Instruments and Methods in Physics Research Section A 2014

KoALICE

Publications of interest

- 5.00m pixer
- Normal mode / High-sensitivity mode
- Abrupt p-n junction between a p- region and n region
- Vertical field strength is controlled by the potential of a surface p+ layer (either V_{p+} or V_{APD})

Mori, Mitsuyoshi, et al. "6.6 A 1280 × 720 single-photon-detecting image sensor with 100dB dynamic range using a sensitivity-boosting technique." 2016 IEEE ISSCC Patent EP 3448018A1 - PANASONIC 2019

APD into the pixel

Junction Termination Edge

