2021 KoALICE Workshop

Research on EOS Disk Storage using Docker

2022.01.07

2021 Timeline

21.02 21.03 21.10 20.11 21.12
Research EQOS Storage System Naver Cloud Finalizing
Preparation on Docker Container Intern Master Degree
- Configure KISTI JBOD using Docker - Graduation thesis
to install EOS storage - Journal Paper(KClI)

Testing EOS storage using FUSE and
FUSEX client
Journal Paper (SCI)

Conference Paper(Domestic)

Journal Paper - SCI(E)

Performance Evaluations of Distributed File Systems

for Scientific Big Data in FUSE Environment 80 ctccrronics

Article
Performance Evaluations of Distributed File Systems for

* 7—" -E-f_l']I@ *Ié%% Linux9.| FUSE E‘EI'OI?_"E% %3“ Scientific Big Data in FUSE Environment
=it xH 9l BH0|M A T} XIsY ST S —

and Seo-Young Noh *

Department of Computer Science, Chungbuk National University, Cheongju-si 28644, Korea;
lee1238234@cbnu.ac.kr (].-Y.L.); moonhyunkim@cbnu.ac.kr (M.-H.K.)
Department of Computer Science and CRAIB, Sukkur IBA University (SIBAU), Sukkur 65200, Pakistan;
asif.shah@iba-suk.edu.pk
Y * ﬂ ’1 1 - E1 0 E o E * q E * ﬁ * * o h 3 Global Science Experimental Data Hub Center, Korea Institute of Science and Technology Information,
= E E ﬂ = ° E E T h 245 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; sahn@kisti.re.kr (S.-U.A.); k2@kisti.re.kr (H.Y.)

Correspondence: rsyoung@cbnu.ac.kr

E I = = Abstract: Data are important and ever growing in data-intensive scientific environments. Such

research data growth requires data storage systems that play pivotal roles in data management and

"

analysis for scientific discoveries. Redundant Array of Independent Disks (RAID), a well-known

storage technology combining multiple disks into a single large logical volume, has been widely

used for the purpose of data redundancy and performance improvement. However, this requires

- RAID-capable hardware or software to build up a RAID-enabled disk array. In addition, it is difficult

) SCI (E) x1ha Electron Icsql HII“EJ to scale up the RAID-based storage. In order to mitigate such a problem, many distributed file
e systems have been developed and are being actively used in various environments, especially in

updates data-intensive computing facilities, where a tremendous amount of data have to be handled. In this

G 3 study, we investigated and benchmarked various distributed file systems, such as Ceph, GlusterFS,
Citation: Lee, J.-Y,; Kim, M.-H.; Raza o

Shah, S.A.; Ahn, S.-U.; Yoon, H.; Noh, Lustre and EOS for data-intensive environments. In our experiment, we configured the distributed

.Y, Performance Evaluations of file systems under a Reliable Array of Independent Nodes (RAIN) structure and a Filesystem in
Distributed File Systems for Scientific ~ Userspace (FUSE) environment. Our results identify the characteristics of each file system that affect
Big Data in FUSE Environment. the read and write performance depending on the features of data, which have to be considered in
Electronics 2021, 10, 1471. https:// data-intensive computing environments.
doi.org/10.3390/ electronics10121471

Keywords: data-intensive computing; distributed file system; RAIN; FUSE; Ceph; EOS; GlusterFS;
Academic Editor: Antonio F. Diaz Lustre

2

Conference Paper - Domestic

CERN EOS =4t Il AJAEIo| Hi X $HH0j IHE 1/0 45 Hluw

. ABiE B3t E2[=Q! S2AE(S} Linuxe] KVM [

IMDLIE Bt o1y E2{AE{ofA2] EOS E4t IR A|AR
dsE 5 $%5%34

A £ : CERNEOS-3AH3}3d A)23e) o 2 33 -2
oo

. NP E=EOoE ME0] A PHAIE|=2X|(KCI)O] A

A ofFd | R 322020 BFAFA IR
| o A2 Fol) 54 Foz

495 32)9 °] B= %

20214 6% 244

EOS on Docker @ KISTI JBOD

- J|&ECQ| EOS AER|X|= A 0Sof| = X610
okl = HjojH|E Ao 2 JAAE|US

- EOSL Alsixjoz A[2% & Q)= Docker O|OJX|E
HIZS

O[tH AH0jA{= OSoll =7 MX[6HX| 9,
Docker2 £33l E0OS2| 4 @A E ZH|o|L{g}s10
Dockerolix| EOS?} o{EH| S=5H=X]
S4oIUS

. Eda 2], KISTIONN 2450] BIAE AHE
RZ310] AR Z2M 20| SI=YOIE B

S TIlE +~ A/US.

KISTI JBOD

- KISTI JBOD
- CPU: Xeon Gold 6230 20Core * 4 / -
- RAM: 768GB —a
- HDD: 12TB * 70EA
- Storage Enclosure: Dell ME4084

Public Ethernet o AMEEE | wf | [sEpessszzzzssssee Gt
<% Ao I S—s | Xl

- 8 Separate RAID 5 volume with 5 HDDs
were created for EOS storage. private Ethernet

(Storage MGMT H28)

KISTI JBOD

KISTI JBOD

CPU: Xeon Gold 6230 20Core * 4 1Tl Tl s T s T 1Tl 1 T i T s T T s T s Tl T 11E55:T 11EEEIT
RAM: 768GB E E E E E E E E E MM
HDD: 12TB * 70EA A1 R RN ARE E E

Storage Enclosure: Dell ME4084

8 Separate RAID 5 volume with 5 HDDs

were created for EOS storage. 11118
Volumewasmappedtoserverusing 1T e T e TR e T T e T e T T s T e T T T T
multipath configuration. E E E E E E E E E E E E E E

DRAWER 0 (TOP)

EOS on Docker @ KISTI JBOD

EOS storage was deployed using Docker

and RAID volumes.

Data layout was set to RAID 6 to mimic 02
storage configuration.

E0S Console [root

localhost] |feos/plain/> space 1s

[root@cbnu-ui ~]# docker ps

CONTAINER ID
g8cbhfcd83dseb
degb23c5tab3
denb279d199e
2al2d4fbagpd
Baafsfa38049
1bbbedg8112a6
g4594b6850aa
70fd3e63aach
ch50e388ed0e
f12e9f334477
d958c5a0d476
4082chl3eebbe
1590bddbse7f
e95703072d5f

BbEEBdﬂbdﬁlf_

IMAGE
centos:7
971ab225
971ab225
3fofdac3sses
3fofdac3s5ea
3fofdac3ss5ea
3fafdac3ssesn
3fafdac3sses
3fafdac3sses
3fafdac3sses
3fofdac3s5ea
3fofdac3ss5ea
3fafdac3ssesn
3fafdac3sses
3fafdac3sses

COMMAND
"/bin/bash"

"/startup script.sh"
"/startup_script.sh"

* fbin/bash"™
"/bin/bash"
"/bin/bash"
"/bin/bash"
"sbin/bash"
¥ fbin/bash®
* fbin/bash"™
"/bin/bash"
"/bin/bash"
"/bin/bash"
"sbin/bash"
¥ fbin/bash®

type name groupsize groupmod| N{fs)| N{fs-rw)| sum{usedbytes)| sum{capacity)| capacity(rw)| nom.capacity| quota| balancing| threshold| converter
spaceview default 8 24 8 g 76.71 GB 375.81 TB 375.81 TB 0 B off off off
EQOS Console [root localhost] |/eos/plain/= fs 1s

host port id path schedgroup geotag boot| configstatus drain| active health
fstl.eos.docker 1095 il /ibod1 default.n docker::test booted rw nodrain online no mdstat
fst2.eos.docker 1895 2 /1bod2 default.o docker::test booted rw nodrain online no mdstat
fst3.eos.docker 1095 3 /1bod3 default.n docker::test booted rw nodrain online no mdstat
Tst4.eos.docker 1895 4 /1bod4 default.o docker::test booted rw nodrain online no mdstat
fst5.eos.docker 1895 5 /1bods default.o docker::test booted rw nodrain online no mdstat
fst6.eos.docker 1895 5] /ibodé& default.o docker::test booted rw nodrain online no mdstat
Tst7.eos.docker 1895 7 /1bod7 default.o docker::test booted rw nodrain online no mdstat
fst8.eos.docker 1095 3 /1boda default.n docker::test booted rw nodrain online no mdstat

EOS Benchmark Methods

« FUSE * XRootD
Pros Pros
- Easy to benchmark. - Native protocol for EOS.
Cons - Has high performance compared to
- Access performance is lower due to other methods.
translation layer. Cons
. FUSEx - No tools for benchmarking
Pros WebDAV(HTTP)
- Easy to benchmark. Pros
- Has improved performance than FUSE - Based on HTTP protocol
Cons - Has many ways to benchmark.
- Same as FUSE. Cons

- HTTP access is restricted

VDBench Benchmark

- Developed by Oracle.
- Used to benchmark large-scale storage system.
- Able to direct access Linux userspace and many distributed file system’s own API.

- Benchmark was performed with FUSE and FUSEX client increasing the size of transfer
blocks from 4 to 4096K.

- XRootD cannot be used because it does not support XRootD protocol.

Result - Sequential Read

 FUSE client shows constant bandwidth after 64K block.

- 4K performance of FUSEX client was higher than FUSE client, however other block result
shows much lower performance than FUSE client.

FUSE Sequential Read Bandwidth FUSEx Sequential Read Bandwidth
757.7
3000 627 800 718,65 ks
2500 2386 2399.5 2359 5 700 654 '
600
2000 500 455.1
<2 <
o 1500 g 400
= 1074.5 200
1000 245.65
200
009335 100
o N 0
4K 16K 64K 256K 1M 4M 4K 16K 64K 256K 1M aM
Block Size Block Size

10

Result - Sequential Write

* FUSE client shows similar pattern to sequential read.
« FUSEX client shows stable bandwidth increase, but lower performance compared to FUSE.

FUSE Sequential Write Bandwidth FUSEx Sequential Write Bandwidth
1000 903.75 450 414.95 425.35 423.8
900
789.05 796.6 817.4 400
800 350 318.55
654.65
700 200
600 oo
w
& 500 &
b = 200
400 144.65
300 150
100
200 142.35 50,325
100 . 50
0 0
4K 16K 64K 256K 1M aM 4K 16K 64K 256K 1M aAM
Block Size Block Size

11

Result - Random Read

« Unlike sequential result, FUSE shows bandwidth increase up to 256K block.
* FUSEXx shows high bottleneck after 256K block.

FUSE Random Read Bandwidth FUSEx Random Read Bandwidth
800 749.05
2000 1807.5 1797 17345
1800 : 700
1600 615.55
600
1400 12285
1200 500
Y <
& 1000 @ 400
= >
800 300
600
437.4 - 185.85
400
500 121.7 I 100 49.35 62.835 62.28
0 [0
aK 16K 64K 256K M AM aK 16K 64K 256K M AM
Block Size Block Size

12

Result - Random Write

* FUSEX client shows higher performance at 4K and 16K block.
- After 256K block, FUSE client performance is higher than FUSEX client.

FUSE Random Write Bandwidth FUSEx Random Write Bandwidth
600 400 367.95
349.95
501.25 350
500 455.25 460.45 299.15
300 262.15
400
250
< n
@ 300 272 & 200
= =
500 150
93.89
100
100 77.9
14.505 . 01736
0 — 0
4K 16K 64K 256K 1M aM 4K 16K 64K 256K 1M aM
Block Size Block Size

13

Result - Sequential/Random Latency

- Similar to bandwidth result, FUSE client’s latency was lower than FUSEX client.

- FUSEX has lower latency when small block size were used.
- But large block shows long latency time then FUSE client.

Sequential Read Latency Sequential Write Latency Random Read Latency
163.84 163.84
81.92 1638.4
40.96 ié_gé 819.2 128
20.48 0. 409.6
10.24 10.24 204.8
512 512 102.4 32
2.56 2.56 51.2
£ 128 £ 128 g 256 £ 16
0.64 0.64 12.8
0.32 0.32 6.4 8
0.16 0.16 3.2
0.08 0.08 1.6 4
0.04 0.04 0.8 2
0.02 0.02 0.4
0.01 0.01 0.2 1
: M am M M 1M am
Block Size Block Size Block Size

e FUSE et FUSEX =@ FUSE === FUSEX e FUSE el FUSEX

Random Write Latency

Block Size

=@ FUSE ==l FUSEX

Result - CPU Usage

 CPU utilization of FUSEX client was lower than FUSE client.

- Maybe client performance is bound to CPU utilization, but not sure about it.(might be bug)

aM

1M

256K

64K

16K

4K

FUSE Client CPU Usage

o

2 4 6 8 10 12

W Seq. Read mSeq. Write Rand. Read Rand. Write

14

am

M

256K

64K

FUSEx Client CPU Usage

o

2 4 6 8 10 12 14

W Seq. Read mSeq. Write Rand. Read Rand. Write

15

simmary N

- Performance of FUSEX client was poorer than legacy FUSE client.

Also, latency result shows same result - FUSEX client had higher latency than FUSE
Client except small block size.

- This can be bug because production environment needs small size block performance.

- Same phenomenon was observed when multiple clients were used.

- Although CPU utilization for FUSEX client was way lower than FUSE client, we cannot
analyze the result because it needs more low-level inspection.

« Have to think about benchmark with XRootD.

o

Thank You

