Time-of-flight methods in ion beam analysis

MARKO BRAJKOVIĆ, ZDRAVKO SIKETIĆ, MARKO BARAC, IVANČICA BOGDANOVIĆ RADOVIĆ RUĐER BOŠKOVIĆ INSTITUTE, ZAGREB, CROATIA EUNPC22, SANTIAGO DE COMPOSTELA, OCTOBER 2022

RBI ACCELERATOR FACILITY

Currenty: protons up to 8 MeV, and heavy ions up to 30 MeV from the VDG accelerator

HEAVY ION BEAM TECHNIQUES

Most IBA techniques use protons: PIXE, RBS, PIGE, IBIC.

Heavy ions vs protons:

- **Production of recoils and secondary particles**
- **High stopping power**

MeV TOF SIMS Time-of-Flight Secondary **Ion Mass Spectrometry**

organic samples

Recoil Detection Analysis inorganic films

TOF ERDA

Time-of-Flight Elastic Recoil Detection Analysis

SEPARATION OF ELEMENTS BY MASS

Heavy ion beam – e.g. 23 MeV lodine ions

- sensitivity 10¹⁵ /cm²
- 2 nm depth resolution, up to 500 nm probe depth
- all elements are resolved
- Resolution < 1 amu for m < 40 amu

- E and TOF measured
- cross sections, stopping powers known

 $TOF = T_1 - T_2 = L\left(\frac{M_2}{2KE_0}\right)^2$

Depth profiling of few 100 nm thick samples Depth resolution up to ~1 nm at the surface **TOF ERDA: SETUP**

GID: better energy resolution than particle silicon detectors + radiation hardness

Z. Siketić, N. Skukan and I. Bogdanović Radović "A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis", Review of Scientific Instruments 86, 083301 (2015)

TOF ERDA: SETUP – TIMING GATES

TOF ERDA APPLICATION – Quality control of production proces

Element	Total Number of 10 ¹⁵ at/cm ²
Н	15.2
С	6.6
0	158.7
F	33.5
Ni	141.8

Flourine contamination found

TOF ERDA APPLICATION – Thin film analysis

Sample: TiN

Beam: 20 MeV ⁸¹Br⁵⁺

TOF ERDA APPLICATION – Multilayer samples

Beam: 25 MeV ¹²⁷I, $\theta_{in} = 5^{\circ}$, $\theta_{scatt.} = 37.5^{\circ}$

Target: 5x AIN/TiN 20 nm layers

Time spectra of the Al events

Result of the analysis: Al:N=1:1, d = 24 nmTi:N=1:1, d = 40 nm

TOF ERDA + Ar SPUTTERING

- TOF-ERDA used to measure the surface elemental composition, Ar sputtering to extract the depth information
- best achievable (surface) resolution of 2 nm for the entire layer

Siketić, Z., Bogdanović Radović, I., Sudić, I. *et al.* Surface analysis and depth profiling using time-of-flight elastic recoil detection analysis with argon sputtering. *Sci Rep* **8**, 10392 (2018).

TOF ERDA promoted by argon sputtering (lines + symbols) and TOF-ERDA (lines) depth profile for a 15-nm-thick Cu layer evaporated onto the Si substrate.

MeV TOF-SIMS

Time-of-Flight Secondary Ion Mass Spectrometry

MeV SIMS

= mass spectrometry technique used for identification of atomic and molecular species by measuring time-of-flight of the secondary ions sputtered from the sample surface

$$E = \frac{qV}{2} = \frac{m}{2} v^2 = \frac{m}{2} \left(\frac{L}{TOF} \right)^2 \rightarrow \frac{m/q}{2} = 2V \left(\frac{TOF}{L} \right)^2$$
(E₀ few eV)

TOF spectrum Mass spectrum

Scanning over the sample — Imaging (2D spatial molecular distribution)

 Higher SI yield for heavier molecules, and less fragmentation, than for keV counterpart

Silicon beam on a leucine target: electronic stopping dominates for MeV energies

TOF mass spectrometry techniques comparison

MeV SIMS APPLICATIONS @ RBI

Determination of Deposition Order of Toners, Inkjet Inks, and Blue Ballpoint Pen Combining MeV-Secondary Ion Mass Spectrometry and Particle Induced X-ray Emission

Katherine Louise Moore, † Marko Barac, † Marko Brajković, † Melanie Jane Bailey, * Zdravko Siketić, † and Iva Bogdanović Radović*,†©

Since 2014 we published 16 papers in high IF journals on application of MeV SIMS analysis:

- Biology (identification of lipids and fatty acids in various tissues and single cells, 2 papers published)
- Cultural heritage (identification of pigments and binders of modern paint materials, 3 papers published

Diabetes Research and Clinical Practice

- Forensics (study of deposition order of crossing lines of different writing tools, 3 papers published)
- Simultaneously analysis of organic and inorganic materials (2 papers published)

Study of the diacylglycerol composition in the liver and serum of mice with prediabetes and diabetes using MeV TOF-SIMS

Marijana Popović Hadžija a S ™, Zdravko Siketić b, Mirko Hadžija a, Marko Barac b, Iva Bog

Development of MeV SIMS and measurements of fundamental parameters (6 papers published)

scientific reports

Depth profiling of Cr-ITO dual-layer sample with secondary ion mass spectrometry using MeV ions in the low energy region Marko Barac^{1,2|3}, Marko Brajković¹, Zdravko Siketić¹, Jernej Ekar^{2,3}, Iva Bogdanović Radović¹,

pubs.acs.org/ac

Identification of Synthetic Organic Pigments (SOPs) Used in Modern Artist's Paints with Secondary Ion Mass Spectrometry with MeV Ions

Matea Krmpotić,* Dubravka Jembrih-Simbürger, Zdravko Siketić, Nikola Marković, Marta Anghelone, Tonči Tadić, Dora Plavčić, Mason Malloy, and Iva Bogdanović Radović

MeV SIMS: APPLICATIONS

Example #1: Molecular imaging of single CaCo-2 cancer cell

Siketić, Z., Bogdanović Radović, I., Jakšić, M., Popović Hadžija, M., & Hadžija, M. (2015) Applied Physics Letters, 107(9), 093702.

Beam: 9 MeV O⁴⁺

Scan size: $85x85 \mu m^2$ ($\approx 300 nm/pixel$)

MeV SIMS: APPLICATIONS

Exampple #2: Forensics: determination of depositioning order of inks/toners

Moore, K. L., Barac, M., Brajković, M., Bailey, M. J., Siketić, Z., & Bogdanović Radović, I. (2019) Analytical chemistry, 91(20), 12997-13005.

Ink crossing imaging + PCA analysis

MeV SIMS: OLD SETUP

TOF START: Primary beam pulsing

TOF STOP: MCP detector

FOCUSING: magnetic lenses

IMAGING: Primary beam scanning over the sample

Cannot use ions heavier than Silicon!

upper limit: $m \cdot E/q^2 < 14 \text{ MeV amu}$

ALTERNATIVE: COLLIMATED BEAM

- cheap alternative for magnetic focusing for small current (fA) application
- collimation independent on ion mass and energy = heavy, high energy ion can be used
- in principle, in-air extraction possible

COLLIMATED BEAM:

TOF START: Primary beam pulsing?

TOF STOP: MCP detector (upgraded with 10 kV postacceleration) **FOCUSING**: **COLLIMATION with micro-capillary/micro-aperture**

IMAGING: sample placed on piezo-stage in front of fixed collimator

MICROCAPILLARY: TRANSMISSION

spatial distribution of transmitted beam

M. Brajković, M. Barac, D. Cosic, I. Bogdanović Radović, Z. Siketić, Development of MeV TOF-SIMS capillary microprobe at the Ruđer Bošković Institute in Zagreb, Nucl. Instr. and Meth. B 461 (2019) 237-242.

MICROCAPILLARY: IMAGING

lateral resolution: leucine-evaporated copper mesh

M. Brajković, I. Bogdanović Radović, M. Barac, D. D. Cosic, Z. Siketić, Imaging of Organic Samples with Megaelectron Volt Time-of-Flight Secondary Ion Mass Spectrometry Capillary Microprobe, J. Am. Soc. Mass Spectrom. 2021, 32, 10, 2567–2572.

Imaging: ink crossing on a paper

CONS: halo and low contrast

5 μm APERTURE

steel, thickness 12.7 μm , aluminum frame

beam through the aperture on Gafchromic EBT3 film

IMAGING #1: MESH

MUCH <u>BETTER CONTRAST</u> COMPARED TO THE CAPILLARY!

transmission: mesh with 127 μ m pitch lateral resolution \approx 10 μ m (for 5 μ m aperture)

Phthalocyanine map, 1 x 0.9 mm²

electron start: mesh with 440 µm pitch

? TWO TOF **START** TRIGGER OPTIONS

- Primary ion detection (by a PIN diode) simple setup, good mass resolution thin targets only, radiation damage
- Detection of secondary electrons thick targets, radiation hard complicated setup

STOP signal
Kore detector with 10
kV postacceleration

THE SETUP

thin carbon foil (5 nm thickness) over the aperture = **the production of secondary electrons sampleindependent** (for example, 7 kHz from a silicon plate but only 1 kHz from a paper

> two-stage ion mirror

THICK TARGET SETUP: DETECTION OF ELECTRONS

COMSOL simulations

electric potential and electron trajectories with the target at the extraction potential

TARGET CANNOT BE HELD AT CONSTANT (EXTRACTION) VOLTAGE!

electric potential distribution and electron detection with the target at zero potential

SHEMATIC OVERVIEW OF THE THICK-TARGET SETUP: DETECTION OF SECONDARY ELECTRONS

M. Brajković, I. Bogdanović Radović, M. Barac, D. D. Cosic, Z. Siketić, Imaging of Organic Samples with Megaelectron Volt Time-of-Flight Secondary Ion Mass Spectrometry Capillary Microprobe, J. Am. Soc. Mass Spectrom. 2021, 32, 10, 2567–2572.

- target voltage applied only for 2 μs
- delayed extraction
- extraction blocked for the remaining part of the acquisiton window(98 μs)

MASS SPECTRUM: TWO MODES

Phthalocyanine blue (m = 576.1 Da) mass spectrum with 10 kV postacc. detector

Comparison of two modes of operation

Mass resolution (for m = 576.1 Da):

- 2500 in the transmission mode
- 1400 in the electron start mode

but S/N ration 2 – 5 times better in electron start mode (random coincidences minimized)

IMAGING #2: INK CROSSING ON A PAPER

optical photo of ink crossing on a paper

mass spectrum from the ink crossing area

map of signature ink molecules (358-372 Da), ink crossing on a paper, 1 x 1 mm²

IMAGING #3: FINGERMARK

fingermark on a silicon plate under optical microscope

total map, fingermark on a silicon plate, 5 x 5 mm²

IMAGING #4: MOUSE TISSUE

 $2 \times 2 \text{ mm}^2 \text{ scan},$ t = 3.5 hours

primary beam 14 MeV Cu⁴⁺

IMAGING #4: MOUSE TISSUE

sample photo on an optical microscope

total map

lipid fragment (m = 184.1 Da)

cholesterol (m = 369.4 Da)

medium (m = 228.4 Da)

CONCLUSIONS

- Two techniques (heavy MeV ions + TOF measurements): inorganic films and organic samples
- Different applications: thin film analysis, biomedicine, forensics, ...

THANK YOU FOR LISTENING!

Acknowledgments

