

INVESTIGATION OF THE ^{7,6}H STATES IN ⁸He+²H INTERACTION

Ivan Muzalevskii Silesian University in Opava & FLNR JINR for ACCULINNA-2 collaboration

Light exotic nuclei

Superheavy hydrogen isotopes – key elements!

- The biggest A/Z ratio
- Unique many-body decay channels
- Special stability of ⁷H: closed p^{3/2} neutron subshell

Long living ⁷H g.s. expected candidate for 4n radioactivity

History of ⁷H

Predicted in 1972

-A. I. Baz' et al., "Light and intermediate nuclei near the border of nuclear stability" (Nauka, Moscow, 1972)

- > ⁷Li(π -, π +)
- K. Seth, "Pionic probes for exotic nucle," (1981)
- V. Evseev et al., Nuclear Physics 352, 379 (1981) > 252 Cf ternary fission
- D. Aleksandrov et al., Vas. Fiz. 36, 1351 (1982)
- $> d(^{8}He,^{7}H)^{3}He$
- M. S. Golovkov et al., Phys. Lett. B 588, 163 (2004)
- $\gg \pi$ absorption : ¹¹B(π -,p ³He) ⁷H; ⁹Be(π -,p d) ⁷H
- Y. Gurov et al., The EPJ A 32, 261 (2007)
- -Y. Gurov et al., PPN 40, 558 (2009)

History of ⁷H

First observation

A. A. Korsheninnikov et al., PRL, 082501 (2003)

➤ ~90% of MM -> background; negative energy events

- ➤ 1.9 MeV resolution
- Peculiarity near the t+4n decay threshold

E. Yu. Nikolskii et al., PRC 81, 064606 (2010)

- Triton registration (without momentum)
- ➤ 1.9 MeV resolution
- Structure could not be resolved

 $d\sigma/d\Omega \sim 10 \text{ mb/sr}$

 CF_4 : 4x10¹⁹ & 10¹⁹ at./cm² (very thin target)

no background measurements;

no isotope identification -> reaction channel?

History of ⁶H

D. Aleksandrov et al., Yad. Fiz. 39 (1984) 513

Prerequisites for successful search for ^{6,7}H

➢ reliable channel identification

Suppression of background

≻high energy resolution (~1 MeV)

ACCULINNA-2

26 AMeV ⁸He beam: ~10⁵ pps, ~90% purity

Particle identification

Reference run

Independent **MM calibration** with 42 AMeV ¹⁰Be beam

Full agreement of MC simulations with experimental data

Run 1 results Bezbakh et al., Phys.Rev.Lett. 124, 022502 (2020)

Run 2 results I. Muzalevskii et al., Phys. Rev. C 103, 044313 (2021)

⁷H ground state at 2.2(5) MeV

⁷H excited state at 5.5(3) MeV (possibly doublet at 5.5-7.5 MeV)

Peak at 11(3) MeV

Additional evidence: triton distributions

P.G. Sharov et al., JETPh Lett., 110:514, 2019

Two independent tests are consistent with true 5-body decay

⁷H results

- Ground state at 2.2 MeV
 Cross section 24 μb/sr
 - Resonance at 5.5 MeV Cross section 30 µb/sr
- Indications for states at 7.5, 11 MeV
- In agreement with [E. Yu. Nikolskii et al., PRC 81, 064606 (2010)]

⁶H results

4058 ⁴He-³H coincidences 131 ⁴He-³H-neutron coincidences

Can not be described as 4-body phase vol.

Selection of triton energies and reaction angle allowed to highlight the broad peak at 4-8 MeV

Special background analysis methods should be applied

Background subtraction

Neutron coincidence

131 ⁴He-³H-neutron coincidences

Background free

No resonance states lower 3.5 MeV

Peak at 6.8 MeV

⁶H results

NO states below 3.5 MeV $(d\sigma/d\Omega < 5 \mu b/sr)$

Peak at 4-8 MeV (~190 μ b/sr):

- 4.5 MeV ground state
- 6.8 MeV excited state

Light exotic nuclei today

New level schemes for all isotopes ³H-⁷H ⁶H as the evidence of 5-body decay of ⁷H The unique true 4n-decay mechanism is proved to be realized for ⁷H. This is the first such case found in the nuclide map.

Summary

- The ⁷H g.s. was observed at 2.2 MeV (d σ /d Ω ~ 25 µb/sr)
- The ⁷H excited state at 5.5 MeV (d σ /d $\Omega \sim 30 \mu$ b/sr)
- Possible +5/2-3/2 doublet with 7.5 MeV
- Indication of state at 11 MeV

Thanks for attention

- No ⁶H states at energy less than 3.5 MeV for $d\sigma/d\Omega < 5 \mu$ b/sr limit ⁶H resonance presence at 4-8 MeV ($d\sigma/d\Omega \sim 190 \mu$ b/sr). ⁶H g.s. at 4.5 MeV, ⁶H* at 6.8 MeV
 - ♦ confirms the ⁷H g.s. five-body decay channel
 - ♦ decay of ⁶H through ⁵H g.s.
 - The obtained results represent an important step towards resolving the ^{6,7}H problem

Evidence for the First Excited State of ⁷H

A. A. Bezbakh,^{1,2} V. Chudoba,^{1,2,*} S. A. Krupko,^{1,3} S. G. Belogurov,^{1,4} D. Biare,¹ A. S. Fomichev,^{1,5} E. M. Gazeeva,¹
A. V. Gorshkov,¹ L. V. Grigorenko,^{1,4,6} G. Kaminski,^{1,7} O. A. Kiselev,⁸ D. A. Kostyleva,^{8,9} M. Yu. Kozlov,¹⁰ B. Mauyey,^{1,11}
I. Mukha,⁸ I. A. Muzalevskii,^{1,2} E. Yu. Nikolskii,^{6,1} Yu. L. Parfenova,¹ W. Piatek,^{1,7} A. M. Quynh,^{1,12} V. N. Schetinin,¹⁰
A. Serikov,¹ S. I. Sidorchuk,¹ P. G. Sharov,^{1,2} R. S. Slepnev,¹ S. V. Stepantsov,¹ A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13}
G. M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,7} and M. V. Zhukov¹⁵

PHYSICAL REVIEW C 103, 044313 (2021)

Resonant states in ⁷H: Experimental studies of the ²H(⁸He, ³He) reaction

I. A. Muzalevskii⁽⁰⁾,^{1,2,*} A. A. Bezbakh,^{1,2} E. Yu. Nikolskii,^{3,1} V. Chudoba,^{1,2} S. A. Krupko,¹ S. G. Belogurov,^{1,4} D. Biare,¹ A. S. Fomichev,^{1,5} E. M. Gazeeva,¹ A. V. Gorshkov,¹ L. V. Grigorenko,^{1,4,3} G. Kaminski,^{1,6} O. Kiselev,⁷ D. A. Kostyleva,^{7,8} M. Yu. Kozlov,⁹ B. Mauyey,^{1,10} I. Mukha,⁷ Yu. L. Parfenova,¹ W. Piatek,^{1,6} A. M. Quynh,^{1,11} V. N. Schetinin,⁹ A. Serikov,¹ S. I. Sidorchuk,¹ P. G. Sharov,^{1,2} N. B. Shulgina,^{3,12} R. S. Slepnev,¹ S. V. Stepantsov,¹ A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13} G. M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,6} and M. V. Zhukov¹⁵

PHYSICAL REVIEW C 105, 064605 (2022)

⁶H states studied in the ²H(⁸He, ⁴He) reaction and evidence of an extremely correlated character of the ⁵H ground state

E. Yu. Nikolskii,^{1,2,*} I. A. Muzalevskii,^{2,3} A. A. Bezbakh,^{2,3} V. Chudoba,^{2,3} S. A. Krupko,² S. G. Belogurov,^{2,4} D. Biare,² A. S. Fomichev,^{2,5} E. M. Gazeeva,² A. V. Gorshkov,² L. V. Grigorenko⁰,^{2,4,1} G. Kaminski,^{2,6} M. Khirk,^{7,2} O. Kiselev,⁸ D. A. Kostyleva,^{8,9} M. Yu. Kozlov,¹⁰ B. Mauyey,^{2,11} I. Mukha,⁸ Yu. L. Parfenova,² W. Piatek,^{2,6} A. M. Quynh,^{2,12} V. N. Schetinin,¹⁰ A. Serikov,² S. I. Sidorchuk,² P. G. Sharov,^{2,3} N. B. Shulgina,^{1,13} R. S. Slepnev,² S. V. Stepantsov,² A. Swiercz,^{2,14} P. Szymkiewicz,^{2,14} G. M. Ter-Akopian,^{2,5} R. Wolski,^{2,15} B. Zalewski,^{2,6} and M. V. Zhukov¹⁶

³He identificatioin

I. Muzalevski et al., Bull.Rus.Acad.Sci.: Phys., 84, 500 (2020)

³He identificatioin

I. Muzalevski et al., Bull.Rus.Acad.Sci.: Phys., 84, 500 (2020)

Reaction angle selection

⁶H-⁵H correlation

Strong low-energy spectra correlation. Sequential decay.

⁷H results agreement with E. Yu. Nikolskii et al., PRC 81, 064606 (2010)