

R-Matrix study of the β^+ decay of 8_5B to the highly excited states of 8_4Be

Author: Daniel Fernández Ruiz

Supervisors: Dr. Olof Tengblad, Dra. MJG Borge

Experimental Nuclear Physics Group (IEM-CSIC)

Presented at CPAN-2022

The β^+ decay of ${}_5^8$ B is of interest for both astrophysics and nuclear structure

Astrophysics

Daniel Fernández Ruiz

✓ Part of the stellar hydrogen-burning chain

Source of high-energy solar neutrinos above 2 MeV

JYFL08

O Kirsebom. Phys. Rev. C, 83(6):065802-065822, 2011.

Nuclear Structure

Through the β^+ decay of 8B , we study the structure of ⁸Be

The 16.6 and 16.9 MeV levels of 8Be are <u>assumed</u> to form a <u>fully</u> mixed 2⁺isospin doublet

 $(^{7}Li \otimes p ; 7Be \otimes n)$

Only known case of Nuclear Chart

We can experimentally check this assumption!

IS633

S. Viñals, PhD Thesis (Complutense University of Madrid, Department of Physics, Sep. 2020).

Our objective is to determine the mixture coefficients of the 2^+ isospin doublet

Experiment IS633 was conducted at ISOLDE – CERN (May of 2017) to study the structure of ⁸Be

- 4 Si △E-E **telescopes** DSSD + PAD
- Coin 60μm -- 60μm (U6 & U2)
 - (stop α: 1-10 MeV
 - --- 40μm -- 40μm (U3 & U4)
 - (low β -response)

Our experiment follows a four-step technique

- 1- ${}^8_5\mathrm{B}$ nucleus is implanted in a ${}^{12}_6\mathcal{C}$ foil
- 2- The β^+ decay of 8_5B ($T_{1/2} = 771.17(94)$ ms) populates states of 8_4Be
- 3- ${}^{8}_{4}$ Be is unbound $\rightarrow \alpha \alpha$ break up
- 4- Reconstruction $\alpha \alpha$ coincidence spectrum through a system of four telescopes

How can we determine if the two states are mixed?

Theory

Each state in the doublet can be decomposed into pure isospín states

$$|a\rangle = \alpha |T = 0\rangle + \beta |T = 1\rangle$$
 $\alpha^2 + \beta^2 = 1$

$$|b\rangle = \beta |T=0\rangle - \alpha |T=1\rangle$$
 mixing coeficients

If the states are completely mixed : $\alpha^2/_{\beta^2} = 1$

Method 1

 $\frac{\alpha^2}{\beta^2} = \frac{B_{16.6,GT}}{B_{16.9,GT}}$

$$\frac{\alpha^2}{\beta^2} = \frac{B_{16.9,F}}{B_{16.6,F}}$$

Method 2

$$\alpha^2 = \frac{\Gamma_{16.6}}{\Gamma_0} = \frac{\Gamma_{16.6}}{\Gamma_{16.6} + \Gamma_{16.9}}$$
$$\beta^2 = \frac{\Gamma_{16.9}}{\Gamma_0} = \frac{\Gamma_{16.9}}{\Gamma_{16.6} + \Gamma_{16.9}}$$

Fitting the spectrum gives the relevant information about the levels (E, B_F, B_{GT}, Γ)

The β^+ decay feads levels to broad to be fitted with a simple function (Gauss, Landau, ...)

R-Matrix formalism \rightarrow Nuclear resonances in reaction studies \rightarrow β -decay followed by 2-body break up

R-Matrix Theory

A.M. Lane et al., Rev. Mod. Phys. 30(2):257-353, 1958 F.C. Barker, Aus. Journ. Phys. 22(3):293-316, 1969

- ➤ The configuration space → 2 Regions (1- nuclear 2-columb)
- \triangleright Log derivate of the w.f must be continuous in the boundary (r_0) .
- ightarrow Imposing continuity in r_o we obtain a Matrix relating both regions:

$$R_{c'c} = \sum_{\lambda} \frac{\gamma_{\lambda c'} \gamma_{\lambda c}}{E_{\lambda} - E}$$

Internal Region (Nuclear) (Coulomb)

The R-Matrix is formed by individual nuclear resonances \longrightarrow Each with characteristics parameters (E, B_F , B_{GT} , Γ)

If you feel confused remember: R-Matrix is just a parametrization in term of well-defined resonances

R-Matrix Praxis

¿How can we fit data with R-Matrix?

- I. Select the number of resonances with initial parameters (E, B_E , B_{CT} , Γ)
- II. Liberate (allow to change) some of the parameters.
- III. Modify the free parameters till the R-matrix spectrum fits the experimental data (Root-Minuit).
- IV. Liberate other parameters and start again
- V. Iterate until you get the best fit (χ^2 minimization)

Our approach

(4x R-Matrix resonances)

3 MeV 16,6 MeV 16,9 MeV

BKG

Main decay

Dominant

Intermediate Region+ level tails

The residue function measures the quality of the fit

The contribution of the broad 3 MeV State does not influence the peaks of the 2⁺ doublet

The global fit includes the contributions of the 3 MeV and Intermediate región

So, that's all?

Not yet, we would like to know why there is a discrepancy between the Decay Width ($\Gamma_{\alpha\alpha}$) obtained through our R-Matrix and those of the adopted published values [Tilley (2004)]

We have performed two types of cross-checks to find the reason for this discrepancy

Parameters	Tilley (2004)	Global Fit	Local 2 ⁺ Fit
\mathbf{r}_0 (fm)	1.35	1.35	1.35
E (keV)	3030(10)	3052(37)	
$2_0^+ \mathbf{B}_F$			0
\mathbf{B}_{GT}		0.0118	513(56)
$\Gamma_{lphalpha}({ m keV})$	1513(15)	1957	7(15)
E (keV)	16626(3)	16632(54)	16632(70)
$2_{1}^{+} \mathbf{B}_{F}$		0.63(24)	0.32(81)
\mathbf{B}_{GT}		0.98(14)	1.17(35)
$\Gamma_{lphalpha}({ m keV})$	108.1(5)	129.47(28)	129.5(36)
E (keV)	16922	16921(20)	16919.5(90)
2_2^+ \mathbf{B}_F		1.08(24)	1.44(79)
\mathbf{B}_{GT}		0.57(14)	0.35(49)
$\Gamma_{lphalpha}({ m keV})$	74.0(4)	112.5(11)	108(13)
${f E} \; ({ m keV})$		21:	205
$2_{Bkg}^{+}\mathbf{B}_{F}$			0
\mathbf{B}_{GT}		1.3	438
$\Gamma_{lphalpha}({ m keV})$		119	0.11

Repeat the fit under different initial parameters to ensure convergence

Comparison with previous results

To test if there is any systematic error in our data

Check I: Fix the decay widths to the literature values

Check I: $\Gamma_{\alpha\alpha}$ = Fixed

				De L _x (kev)
년 (<u>ଡ</u>	0.2			
_	0.2	5000	 10000	 15000 *Be E _x (keV)

Levels	Parameters	Literature [Til04]	S.Viñals	Check I
	r_o (fm)	1.35	1.35	1.35
	χ^{2} (2-17.2 MeV)		14.4	3991
2+	E (keV)	3030(10)	3058(31)	2959.3
۷0	$\Gamma_{\!lphalpha}$ (keV)	1513(15)	1876(94)	1415.7
2+	E (keV)	16626(3)	16632(83)	16616
² 1	$\Gamma_{\!lphalpha}$ (keV)	108.1(5)	129.47(28)	180
2+	E (keV)	16922	16921(85)	16919
2 ₂ ⁺	$\Gamma_{\!lphalpha}$ (keV)	74.0(4)	112.5	74.076
2+	E (keV)		21205	17238
2^+_{Bkg}	$\Gamma_{\!lphalpha}$ (keV)		119.11	104.26

$\Gamma_{\alpha\alpha}$ = Fixed to Literature: does not generate good results.

Results

Check II: Set the decay widths to the literature values, allowing them to change

Levels	Parameters	Literature [Til04]	S.Viñals	Check I	Check II
	r_o (fm)	1.35	1.35	1.35	1.35
	χ^{2} (2-17.2 MeV)		14.4	3991	14.3
2+	E (keV)	3030(10)	3058(31)	2959.3	3050.75
۷0	$\Gamma_{\!lphalpha}$ (keV)	1513(15)	1876(94)	1415.7	1949.8
7 +	E (keV)	16626(3)	16632(83)	16616	16627
2 ₁ ⁺	$\Gamma_{\!lphalpha}$ (keV)	108.1(5)	129.47(28)	180	123.98
7 +	E (keV)	16922	16921(85)	16919	16917
2 ₂ ⁺	$\Gamma_{\!lphalpha}$ (keV)	74.0(4)	112.5	74.076	99.735
2+	E (keV)		21205	17238	23338
2^+_{Bkg}	$\Gamma_{\!lphalpha}$ (keV)		119.11	104.26	1331.4

Results

ho ho ho ho = Fixed to Literature:

does not generate good results.

 $\Gamma_{\alpha\alpha}$ = Let free : improves the global fit

10⁷

Check III: Modify the energy of the BKG level Check I: $\Gamma_{\alpha\alpha}$ = Fixed Check III: $E_{BKG} = 37 \text{ MeV}$ Check II: $\Gamma_{\alpha\alpha}$ = Let Free Legend 10⁷ 10^{7} I Experimental Data Experimental Data —I Experimental Data R-Matrix Fit 10⁶ R-Matrix Fit 3 MeV contribution 10⁶ 3 MeV contribution 16.6 MeV contribution 16.6 MeV contribution 16.9 MeV contribution Background contribution 10^{5} 105 Background contributio

Levels	Parameters	Literature [Til04]	S.Viñals	Check I	Check II	Check III	
	r_o (fm)	1.35	1.35	1.35	1.35	1.35	
	χ^2 (2-17.2 MeV)		14.4	3991	14.3	12.0	1
2+	E (keV)	3030(10)	3058(31)	2959.3	3050.75	3036.9	
2 ₀ ⁺	$\Gamma_{\!lphalpha}$ (keV)	1513(15)	1876(94)	1415.7	1949.8	1883.1	
2+	E (keV)	16626(3)	16632(83)	16616	16627	16623)
2 ₁ ⁺	$\Gamma_{\!lphalpha}$ (keV)	108.1(5)	129.47(28)	180	123.98	114.67	
2+	E (keV)	16922	16921(85)	16919	16917	16913	
2+	$\Gamma_{\!lphalpha}$ (keV)	74.0(4)	112.5	74.076	99.735	99.179	
2+	E (keV)		21205	17238	23338	37000	1
2^+_{Bkg}	$\Gamma_{\alpha\alpha}$ (keV)		119.11	104.26	1331.4	12116	

Results

 $\succ \Gamma_{\alpha\alpha}$ = Fixed to Literature: does not generate good results.

 $\succ \Gamma_{\alpha\alpha}$ = Let free : improves the global fit

 $\gt E_{BKG} = 37 \text{ MeV}$: Lowest χ^2 values; the larger value of the BKG.

JYFL08: experiment conducted in Jyväskylä studying the global shape of the spectrum

O Kirsebom. Phys. Rev. C, 83(6):065802-065822, 2011.

The R-Matrix fit produces a value of $\Gamma_{\alpha\alpha}^{3\,MeV}$ in accordance with the literature

- **❖ JYFL08:** production was not high enough to **1** resolve the doublet
- linear fit to the most stable region (5-6 MeV) to determine a normalization factor.

Levels	Parameters	Literature [Tea04]	JYFL08
	r_o (fm)	1.35	1.35
	χ^2 (2-17.2 MeV)		0,97
	E (keV)	3030(10)	3054
20+	B_{GT}	0.011813(56)	0.01020
$\Gamma_{lphalpha}$ (keV)	1513(15)	1472	
	E (keV)	16626(3)	16544
2+	B_{GT}	-	-
² 1	B_F	-	-
	$\Gamma_{\!lphalpha}$ (keV)	108.1(5)	355
	E (keV)	16922	16887
2+	B_{GT}	-	-
22	B_F	-	-
	$\Gamma_{\!lphalpha}$ (keV)	74.0(4)	120
	E (keV)		21000
2^+_{Bkg}	B_{GT}		0.032
	$\Gamma_{\!lphalpha}$ (keV)		176

We will use the data of this experiment as a reference to compare with our data

Normalized IS633 data in agreement with JYFL08.

Let's analyze the 3 MeV peak

- > Computing the FWHM maunually gives similar results in both data sets.
- ➤ Local fit to the 3 MeV level using 2 R-Matrix levels (3MeV+BKG).
- ➢ Fit to JYFL08 and IS633 data produce results in agreement with published values.

Method		Litera	ature	JYFL	.08	IS6	33
Employed	Fitting Range (MeV)	E (keV)	$\Gamma_{\alpha\alpha}^{3~MeV}$	E (keV)	$\Gamma_{\alpha\alpha}^{3~MeV}$	E (keV)	$\Gamma_{\alpha\alpha}^{3~MeV}$
Manual FWHM				2980	1510	2980	1525
	2-4			3034	1488	2997	1470
R-Matrix	2-5	3030	1513	3036	1475	3006	1588
Algorithm	2-6			3047	1516	3020	1655
	2-7			3060	1565	3030	1706

The local R-Matrix fit of the 3 MeV level, is in agreement, but starts to deviate when including the distribution > 6 MeV.

Local fits produce results in agreement with the literature → global fits don't

The problem appears in the intermediate region (BKG level) → distortion of the 3 MeV resonance

- > R-Matrix decomposes the spectrum in resonant levels.
- > For an excitation to continuum, a virtual resonance must be used.
- > This only works if the continuum is close to the resonant levels.
- But if that is not the case R-Matrix will not work.

R-Matrix can not fit the whole spectrum due to the intermediate (not resonant) region.

Once finished with the R-Matrix discusion we obtain the mixture coefficients.

The Isospin coefficient ratio obtained from the decay width is in accordance with theoretical predictions

First Experimental Confirmation!

- ➤ IS633 is the first experiment that enables to study the 2⁺ doublet of ⁸Be by beta decay where Fermi and Gamow-Teller contributions could be separated.
- > R-matrix formalism was employed to analyse the spectrum.
- ➤ The local fits to either low or high energy-region of the ⁸Be excitation spectrum produces good results.
- \succ The full spectrum fit produces E, Γ values for the 3 MeV state that differs from the ones adopted in the literature. It is important to indicate that we do global fits.
- ➤ We performed cross-checks to ensure that our results are consistent and do not suffer from systematic errors such as summing or piled-up.
- > Comparison with JYFL08 assure that IS633 is consistent with previous results.
- ➤ Fitting including the intermediate "non-resonant" region → distorts the results
- > The obtained result indicate the two doublet states are fully mixed.

Thank you for your attention

Extra Slides

Residue Function (Discusion)

Re-visiting the LT Data

- There were some discussions concerning the residue function
 - Karsten proposes the following formula:

$$R = \frac{Set1 - Set2}{\sqrt{Set1 + Set2}}$$

- Which is strange since the formula is not adimensional
 - Maria Jose instead proposes this one

$$R = \frac{Set1 - Set2}{\sqrt{Set1^2 + Set2^2}}$$

- The difference between both formulas is significant
 - Lets see an example

Comaprasion both formulas LT

We shall compare the behaviour of the Residue Function for both formulas using the LT data

- For Karsten's formula, the discrepancy is huge at 3 MeV.
- For Maria Jose's the discrepancy is larger at the doulet.

Discusion of the Residuals

- The different behaviour makes sense if we examine the limits of both functions.
- For both LT Set 1 and LT Set 2 approaching infinity (according to Wolfram Alpha)

$$\lim_{Set1;Set2\to\infty}\frac{Set1-Set2}{\sqrt{Set1+Set2}}\to\infty \qquad \lim_{Set1;Set2\to\infty}\frac{Set1-Set2}{\sqrt{Set1^2+Set2^2}}\to 1$$

 This implies that when both LT sets exhibit a growing tendency the behaviour of the Residue Function can be different

I will compare the behaviour of both functions when we compare JYFL098 and IS633.

JYFL08 vs LT (IS633)

- As we can appreciate Karsten's residue function indicates a huge discrepancy in the 3 MeV pea
- Maria Jose's residue function indicates a larger discrepancy in the doublet

Results of the comparasion

- Karsten's and Maria Joses's definitions of the residue function give fundamentally different results:
 - ➤ Karsten: Greater difference in the 3 MeV peak
 - Maria Jose: Greater difference in the doublet.
- ➤ In my opinion the results of the second formula look more logical for the following reasons
 - Maria Jose's formula is adimensional
 - ➤ If the discrepancy in the 3 MeV region is so pronounced, it should manifest in the FWHM (which is doesn't).

Even if there is such a discrepancy, ORM_FIT indicates that fitting to the 3 MeV region of IS633 and JYFL089 produces very similar results for all parameters. The intermediate region is the main problem

3 data set where recorded. Each of them with different electronic settings

Low Thresholds (40% of dead time)

- \rightarrow A = 6000 Bq
- Obtain general spectra
- ➢ 60 GB

Low Thresholds (20% of dead time)

- \rightarrow A = 5000 Bq
- Test sensitivity at low energy range
- > 22 GB

High Thresholds (15% of dead time)

- A = 6000 Bq
- Statistics in 2+ doublet
- 40 GB
- Distorted spectra at low energies

Individual tests were employed to ensure the 3 MeV level is not distorted.

No significant difference was found in the 3 MeV peak

The R-Matrix fits allow us to study the Isospin mixing through two methods

Method 1

$$|a\rangle = \alpha |T = 0\rangle + \beta |T = 1\rangle \qquad \alpha^{2} + \beta^{2} = 1$$

$$|b\rangle = \beta |T = 0\rangle - \alpha |T = 1\rangle \qquad A_{a,X} = \langle a|O_{x}|^{8}B\rangle \rightarrow \begin{cases} A_{a,F} = \sqrt{2}\beta \\ M_{a,GT} = \alpha M_{0,GT} + \beta M_{1,GT} \end{cases}$$

$$M_{b,X} = \langle b|O_{x}|^{8}B\rangle \rightarrow \begin{cases} M_{b,F} = -\sqrt{2}\alpha \\ M_{b,GT} = \beta M_{0,GT} - \alpha M_{1,GT} \end{cases}$$

$$B_{16.6,F} = 2C\beta^{2}$$

$$B_{16.9,F} = 2C\alpha^{2}$$

$$B_{16.9,GT} = C'(\alpha M_{0,GT} + \beta M_{1,GT})^{2}$$

$$B_{16.9,GT} = C'(\beta M_{0,GT} - \alpha M_{1,GT})^{2}$$

 $B_{16.9.GT}$

$$\alpha^2 - B_{16.9,F}$$
 $\alpha^2 - B_{16.6,GT}$

$$\frac{\alpha^2}{\beta^2} = \frac{R_{10.9,GT}}{R_{10.0GT}}$$

Method 2

 $B_{16.6.F}$

$$\alpha^2 = \frac{\Gamma_{16.6}}{\Gamma_0} = \frac{\Gamma_{16.6}}{\Gamma_{16.6} + \Gamma_{16.9}}$$
$$\beta^2 = \frac{\Gamma_{16.9}}{\Gamma_0} = \frac{\Gamma_{16.9}}{\Gamma_{16.6} + \Gamma_{16.9}}$$

Mix isospin coeficinets

	Isospin coefficient ratio ($^{lpha}/eta^{2}$				
Method	Local 2 ⁺ Fit	Global Fit			
B_F	5 (12)	1.72 (64)			
B_{GT}	3.4 (5.0)	1.71 (55)			
Γ	1.20 (15)	1.150 (11)			

(m2 /