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Introduction

• Weakly bound exotic nucleus


• Halo nature of its first excited 
state


• Two-body structure models 
applied to reactions
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Structure
• 2-body model (neutron+core)


• Deformation via:


‣ Nilsson model


‣ PAMD [PRC89 (2014) 014333]


• Eigenstates from diagonalization in THO basis
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THO Application Example

small differences are found in the 3=2þ state. The ground
state corresponds predominantly to a j10Beð0þÞ $ s1=2i
configuration, with some admixture of the j10Beð2þÞ $
d5=2i configuration. The 5=2þ state is mainly based on
the 10Be ground state. On the other hand, the 3=2þ reso-
nance is mainly built on top of the excited core. According
to this result, it is expected that the population of the 5=2þ

state is mainly due to the valence excitation mechanism,
whereas the excitation of the 3=2þ state will be mostly due
to a core-excitation mechanism.

To illustrate the sensitivity of the calculation with the
structure model, we have considered two additional models
assuming pure single-particle configurations for the 11Be
g.s. and the 5=2þ and 3=2þ resonances. For the 11Beðg:s:Þ
we consider a pure j0þ $ 2s1=2i configuration. For the
5=2þ resonance we consider two single-particle models:
(i) j0þ $ 1d5=2i (denoted SP1) and (ii) j2þ $ 2s1=2i (SP2).
In the former, the resonance is populated by means of a
valence excitation mechanism, whereas in the second
model the excitation is due to a pure core excitation effect.
Similarly, for the 3=2þ we consider also two extreme
models: (i) j0þ $ 1d3=2i (SP1) and (ii) j2þ $ 2s1=2i
(SP2). The required radial wave functions are taken from
the PRM calculation, conveniently normalized to one.

The nþ 12C potential was taken from Ref. [27]. The
central and transition components of the 10Beþ 12C po-
tential were generated by a double folding procedure,
convoluting an effective nucleon-nucleon (NN) interaction
with the 10Be and 12C matter densities. The latter were
taken, respectively, from the antisymetrized molecular dy-
namics (AMD) calculation of Ref. [28] and from the
parametrization of Ref. [29]. For the effective NN interac-
tion we adopt the spin-isospin independent part of the M3Y
interaction [30] based on the Reid soft-core NN potential.
For the imaginary part of the 10Beþ 12C potential we
assume the same geometry as for the real part. A renor-
malization factor was included to reproduce the elastic
scattering data of 10Beþ 12C at 59.4 MeV/nucleon from
Ref. [31]. Further details of these calculations will be
provided elsewhere.

In Fig. 1 we compare the calculated angular distributions
with the experimental data of Ref. [4]. The upper and
bottom panels correspond to the 5=2þ (Ex ¼ 1:78 MeV)
and 3=2þ (Ex ¼ 3:41 MeV) resonances. It is readily seen

that the pure single-particle models SP1 and SP2 do not
reproduce the shape of the resonances. In the model SP1
(pure valence excitation) the maxima and minima are
shifted to smaller angles with respect to the data and the
angular distribution decays too fast. On the other hand, in
the model SP2 (pure core excitation mechanism) the max-
ima and minima are shifted to larger angles. Finally, the
full PRM model, which includes both valence and core
excitation mechanisms and their interference, the position
of the maxima and minima is very well reproduced. It is
also seen that the absolute magnitude of the data is over-
estimated. Except for this discrepancy in the normaliza-
tion, it is clear that the shape is appreciably improved with
respect to the pure single-particle description and that the
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FIG. 1 (color online). Angular distribution for the Ex ¼
1:78 MeV and 3.41 MeV states in 11Be. The circles are the
data from Ref. [4]. The curves correspond to the extended
DWBA calculations, including core excitation effects, using
different structure models for the 11Be nucleus. For the single-
particle models (SP1 and SP2) the resonance configuration is
indicated in the labels.

TABLE I. Spectroscopic factors for the ground state and resonant wave functions of 11Be, according to the particle-rotor model
(PRM) and the shell-model calculations (WBT) presented in this work.

State Model j0þ $ ð‘sÞji j2þ $ s1=2i j2þ $ d3=2i j2þ $ d5=2i
1=2þ (g.s.) PRM 0.857 . . . 0.021 0.121

WBT 0.762 . . . 0.002 0.184
5=2þ (Ex ¼ 1:78 MeV) PRM 0.702 0.177 0.009 0.112

WBT 0.682 0.177 0.009 0.095
3=2þ (Ex ¼ 3:41 MeV) PRM 0.165 0.737 0.017 0.081

WBT 0.068 0.534 0.008 0.167
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 A. M. Moro and J. A. Lay, Phys. Rev. Lett. 109 (2012) 232502 

Experimental data: Fukuda et al, Phys. Rev. C 70, 054606 (2004)

Resonant breakup of 11Be on a 12C target at 70 MeV/nucleon 



Nilsson Hamiltonian

• Axially symmetric quadrupole deformation


• Collective rotational degree of freedom


• Deformed Woods-Saxon potential
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PAMD Hamiltonian

• Extension of particle-rotor model


• Semi-microscopic coupling potential 
(Antysymmetrized Molecular Dynamics)


• Core excitations
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Wave Functions
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Wave Functions
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Application to 16C(d,p)17C

• A neutron transfer reaction has been studied applying the Adiabatic 
Distorted Wave Approximation (ADWA).


• Wave functions obtained with our two models are used as input 
overlaps.


• Calculations are compared with recent experimental data:


‣ GANIL, 17.2 MeV/nucleon beam [PLB811 (2020) 135939]
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Transfer to bound states
17C first excited State 1/2+ 17C second excited State 5/2+
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Transfer to bound states
Sum for the three bound states
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Transfer to the Continuum
Preliminary calculation for the continuum with PAMD model
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Transfer to the Continuum
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Application to 17C+p Breakup

• Extended Continuum-Discretized Coupled-Chanels calculations 
including core excitation (XCDCC) have been performed for study the 
break up reaction 


‣ XCDCC - [PRC74 (2006) 014606, PRC89 (2014) 064609].


• The PAMD model is used to describe the 17C system.


• Results are compared with the experimental data:


‣ RIKEN, 70 MeV/nucleon beam [PLB660 (2008) 320]
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Angular distribution for Erel~1.5 MeV
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Conclusions
• Two models are considered for 17C, Nilsson and PAMD, which account for the 

effect of deformation in the weak- and strong-coupling limits. 


• A theoretical study of the transfer reaction 16C(d,p)17C and the breakup reaction 
17C(p,p’)16C+n has been performed. 


• Transfer calculations to bound states shows encouraging agreement with the 
existing data.


• The study of the transfer reaction populating unbound states is in progress.


• The analysis of the breakup data supports the presence of some resonances 
predicted by the PAMD model. 


• Other weakly bound nuclei (e.g. 11Be, 19C) and other reactions (e.g. 11Be(p,d)10Be) 
are studied with these models.
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some particular nuclei, both bound and resonant one-neutron
levels are calculated as a function of quadrupole deformation.
The change of nuclear shell structure for neutrons is seen in
both negative and positive one-particle energies of the Nilsson
diagrams. The change comes from the unique behavior of
neutron orbits with small ! values, in particular ! = 0 and 1.
The modified shell structure has direct relevance to the ground
and low-lying states of neutron-drip-line nuclei, in which
weakly bound neutrons are present. Considering the possible
absence of many-body pair-field in light nuclei, the study of
the present type of Nilsson diagrams can definitely help us to
understand the origin of possible deformation and the related
spectroscopic properties of light neutron-drip-line nuclei.

In Sec. II some points of our model are summarized.
Numerical results are presented in Sec. III. Conclusions and
discussions are given in Sec. IV.

II. MODEL

The occupancy of weakly bound one-particle levels has
a contribution especially to the tail of the self-consistent
potentials. However, even for light nuclei presently considered
the number of weakly bound neutron(s) is much smaller than
that of well-bound core nucleons. In other words, the major part
of the nuclear potential is provided by well-bound nucleons.
Thus, for simplicity, the parameters of Woods-Saxon potentials
are taken from the standard ones [11] for stable nuclei except
for the depth, VWS. Namely, the diffuseness, the strength
of spin-orbit potentials, and the radius parameter are taken
from those on p. 239 of Ref. [11]. The depth is adjusted so
that a particular one-neutron level obtains a given desirable
binding-energy in respective examples.

The way in which bound one-particle levels are calculated
is described in Ref. [6], while the eigenphase formalism that
is used to estimate one-particle resonant levels for a deformed
potential is given in Refs. [7,8]. The essential point is that
the coupled equations obtained from the Schrödinger equation
are solved in coordinate space with the correct asymptotic
behavior of wave functions for r → ∞. The solution obtained
in this way is totally independent of the upper limit of radial
integration, Rmax, if both the potential and the coupling term
are already negligible at r = Rmax. One-particle resonant
energy for β #= 0 is defined as the energy at which one of
the eigenphases increases through π/2 as energy increases. In
the limit of β → 0 this definition in the eigenphase formalism
is in agreement with the definition of one-particle resonance
in spherical potentials described in textbooks [12]; the phase
shift increases through π /2 as energy increases.

One-particle resonance is not obtained if none of the
calculated eigenphases do not increase through π/2 as energy
increases. For example, we have no corresponding resonance
in the case where a calculated eigenphase starts to decrease
before reaching π/2 as energy increases. Even if one fails to
obtain one-particle resonance defined in terms of eigenphase,
for a certain small region of energy just after the disappearance
of resonance the concentration of the wave functions inside
the potential may still be found. However, the concentration
will easily disappear after a short time if a resonance is no
longer obtained in the eigenphase formalism. This situation is

analogous to the case of the spherical potential, in which the
phase shift starts to decrease before reaching π/2 as energy
increases [12].

Compared with the Nilsson diagram based on modified
oscillator potentials, the striking difference of the level scheme
obtained in the present work comes from the behavior of levels
with low ! values (in particular, ! = 0 and 1) for β = 0 and
those with small $ values (mainly $π = 1/2+, 1/2−, and
3/2−) for β #= 0, in both the weakly bound and positive-
energy regions. Note that the minimum ! value of possible
components of $π = 1/2+, 1/2−, and 3/2− levels is equal to
0, 1 and 1, respectively. The absence of the centrifugal barrier
for the ! = 0 channel produces the unique behavior of weakly
bound and positive-energy $π = 1/2+ orbits. However, we
find that some $π = 1/2+ resonant levels survive in a higher-
energy region (see, for example, the [200 1/2] level in Fig. 1)
if the relative probability of the s1/2 component inside the
potential is smaller than a certain critical value [8]. Because
the height of the centrifugal barrier becomes lower for a larger
nuclear radius, the unique behavior of ! = 1 components will
be more easily seen in nuclei with larger mass.

III. NUMERICAL RESULTS

A. Neutron-rich C isotopes

Taking VWS = −40.0 MeV and the radius parameter for
A = 17, at β = 0 in Fig. 1 we obtain ε(1d5/2) = −560 keV
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Neutron one-particle levels in Woods-Saxon potential 
VWS = − 40.0 MeV      R = 3.266 fm (A = 17)     a = 0.67 fm 
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FIG. 1. Neutron one-particle levels as a function of quadrupole
deformation. Parameters of the Woods-Saxon potential are designed
approximately for the nucleus 17C. One-particle levels are denoted
by the asymptotic quantum numbers [N nz&$]. The $ values are
denoted for four positive-parity levels for β < 0, because it may be
difficult to see the connection to the levels for β > 0. One-particle
levels appearing at β = 0 are 1p1/2, 1d5/2, 2s1/2, and 1d3/2 levels at
−6.77, −0.56, −0.42, and +5.60 MeV, respectively. One-particle
levels in the positive-energy region, of which the phase shift (one of
the eigenphases) for β = 0 (β #= 0) does not increase through π/2
as energy increases, are not plotted. The neutron numbers 8 and 16,
which are obtained by filling in all lower-lying levels, are indicated
with circles.
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Potentials
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16C(d,p)17C 17C(p,p’)16C+n

• p-n: fitted Gaussian potential 


• 16C-n: PAMD


• 17C-p: Koning-Delaroche (KD02)

• p-n: Reid soft-core


• 16C-n: PAMD/Nilsson


• 16C-d: finite-range adiabatic 
potential (Johnson-Tandy)


• 17C-p: Chapel-Hill (CH89) 



Neutron Transfer Reactions
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