

The role of deformation in the ¹⁷C structure and its influence in transfer and breakup reactions

Pedro Punta, José Antonio Lay and Antonio Moro

Departamento de Física Atómica Molecular y Nuclear Universidad de Sevilla

Introduction

17**C**

- Weakly bound exotic nucleus
- Halo nature of its first excited state
- Two-body structure models applied to reactions

Structure

- 2-body model (neutron+core)
- Deformation via:
 - Nilsson model
 - PAMD [PRC89 (2014) 014333]

Eigenstates from diagonalization in THO basis

$$\phi_{nl}^{THO}(r) = \sqrt{\frac{ds}{dr}} \phi_{nl}^{HO}[s(r)]$$

$$s(r) = \left[r^{-m} + \left(\gamma\sqrt{r}\right)^{-m}\right]^{-\frac{1}{m}}$$

[PRC**71** (2005) 064601]

THO Application Example

Resonant breakup of ¹¹Be on a ¹²C target at 70 MeV/nucleon

A. M. Moro and J. A. Lay, Phys. Rev. Lett. 109 (2012) 232502

12

Experimental data: Fukuda et al, Phys. Rev. C 70, 054606 (2004)

Nilsson Hamiltonian

$$H = -\frac{\hbar^2}{2\mu} \nabla^2 + V_c(r) + V_{ls}(r)(\vec{l} \cdot \vec{s}) - r\beta \frac{dV_c(r)}{dr} Y_{20}(\theta') + \frac{\hbar^2}{2\mathcal{J}} \vec{I}^2$$

- Axially symmetric quadrupole deformation
- Collective rotational degree of freedom
- Deformed Woods-Saxon potential

$$V(\vec{r}') \approx V_c(r) - r\beta \frac{dV_c(r)}{dr} Y_{20}(\theta')$$
 I. Hamamoto, PRC76 (2007) 054319

PAMD Hamiltonian

$$H = -\frac{\hbar^2}{2\mu} \nabla^2 + V_{ls}(r)(\vec{l} \cdot \vec{s}) + V_{vc}(\vec{r}, \xi) + h_{core}(\xi)$$

- Extension of particle-rotor model
- Semi-microscopic coupling potential (Antysymmetrized Molecular Dynamics)
- Core excitations

Low-lying Spectrum of ¹⁷C

Level Scheme

Mean Square Radii

r _{ms} (fm)	Nilsson	PAMD
gs-3/2+	4.18	4.03
1ex-1/2+	6.44	5.24
2ex-5/2+	4.25	-

Spectroscopy Factors

SF	Conf	Nilsson	PAMD
gs-3/2+	d _{3/2} , 0+	0.01	0.03
1ex-1/2+	s _{1/2} , 0+	0.67	0.51
2ex-5/2+	d _{5/2} , 0+	0.33	0.32

Wave Functions

¹⁷C ground state 3/2+

 Ω - axial projections

I - core states

$$u_{jI}^{\lambda J^{\pi}}(r) = \sqrt{2} \sum_{\Omega} (-1)^{J+\Omega} \langle I0 | j - \Omega J\Omega \rangle u_{j\Omega}^{\lambda J^{\pi}}(r)$$

Wave Functions

¹⁷C first excited state 1/2+

¹⁷C second excited state 5/2+

Application to ¹⁶C(d,p)¹⁷C

- A neutron transfer reaction has been studied applying the Adiabatic Distorted Wave Approximation (ADWA).
- Wave functions obtained with our two models are used as input overlaps.
- Calculations are compared with recent experimental data:
 - GANIL, 17.2 MeV/nucleon beam [PLB811 (2020) 135939]

Transfer to bound states

17C first excited State 1/2+

¹⁷C second excited State 5/2+

Transfer to bound states

Sum for the three bound states

Transfer to the Continuum

Preliminary calculation for the continuum with PAMD model

Transfer to the Continuum

Preliminary calculation for the continuum with PAMD model

16C(d,p)17C

Comparison with experimental data in progress

Application to ¹⁷C+p Breakup

- Extended Continuum-Discretized Coupled-Chanels calculations including core excitation (XCDCC) have been performed for study the break up reaction
 - XCDCC [PRC74 (2006) 014606, PRC89 (2014) 064609].
- The PAMD model is used to describe the ¹⁷C system.
- Results are compared with the experimental data:
 - RIKEN, 70 MeV/nucleon beam [PLB660 (2008) 320]

17C(p,p')¹⁶C+n

17C(p,p')¹⁶C+n

17C(p,p')¹⁶C+n

Angular distribution for E_{rel}~1.5 MeV

Conclusions

- Two models are considered for ¹⁷C, Nilsson and PAMD, which account for the effect of deformation in the weak- and strong-coupling limits.
- A theoretical study of the transfer reaction ¹⁶C(d,p)¹⁷C and the breakup reaction ¹⁷C(p,p')¹⁶C+n has been performed.
- Transfer calculations to bound states shows encouraging agreement with the existing data.
- The study of the transfer reaction populating unbound states is in progress.
- The analysis of the breakup data supports the presence of some resonances predicted by the PAMD model.
- Other weakly bound nuclei (e.g. ¹¹Be, ¹⁹C) and other reactions (e.g. ¹¹Be(p,d)¹⁰Be) are studied with these models.

- PhD Grant
- PAIDI Proyectos I+D+i
 P20_01247

Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

Thanks for your attention

Backup

Nilsson Diagram for ¹⁷C

$$H_{sp} = -\frac{\hbar^2}{2\mu} \nabla^2 + V_c(r) + V_{ls}(r)(\vec{l} \cdot \vec{s}) - r\beta \frac{dV_c(r)}{dr} Y_{20}(\theta')$$

I. Hamamoto, PRC76 (2007) 054319

Potentials

¹⁶C(d,p)¹⁷C

 $^{17}C(p,p')^{16}C+n$

- p-n: Reid soft-core
- ¹6C-n: PAMD/Nilsson
- ¹6C-d: finite-range adiabatic potential (Johnson-Tandy)
- ¹⁷C-p: Chapel-Hill (CH89)

- p-n: fitted Gaussian potential
- 16C-n: PAMD
- ¹⁷C-p: Koning-Delaroche (KD02)

Neutron Transfer Reactions

