

UNIÓN EUROPEA
Fondo Europeo de Desarrollo Regional
"Una manera de hacer Europa"

# The role of deformation in the ${ }^{17} \mathrm{C}$ structure and its influence in transfer and breakup reactions 

## Pedro Punta, José Antonio Lay and Antonio Moro

Departamento de Física Atómica Molecular y Nuclear Universidad de Sevilla


## Introduction

$$
{ }^{17} \mathrm{C}
$$

- Weakly bound exotic nucleus
- Halo nature of its first excited state
- Two-body structure models applied to reactions


Significant effect of
core deformation


Core Excitations

## Structure

- 2-body model (neutron+core)
- Deformation via:
- Nilsson model

- Eigenstates from diagonalization in THO basis

$$
\phi_{n l}^{T H O}(r)=\sqrt{\frac{d s}{d r}} \phi_{n l}^{H O}[s(r)] \quad s(r)=\left[r^{-m}+(\gamma \sqrt{r})^{-m}\right]^{-\frac{1}{m}}
$$

## THO Application Example

Resonant breakup of ${ }^{11} \mathrm{Be}$ on a ${ }^{12} \mathrm{C}$ target at $70 \mathrm{MeV} /$ nucleon

A. M. Moro and J. A. Lay, Phys. Rev. Lett. 109 (2012) 232502

Experimental data: Fukuda et al, Phys. Rev. C 70, 054606 (2004)

## Nilsson Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{c}(r)+V_{l s}(r)(\vec{l} \cdot \vec{s})-r \beta \frac{d V_{c}(r)}{d r} Y_{20}\left(\theta^{\prime}\right)+\frac{\hbar^{2}}{2 \mathscr{F}} \vec{I}^{2}
$$

- Axially symmetric quadrupole deformation
- Collective rotational degree of freedom
- Deformed Woods-Saxon potential

$$
V\left(\vec{r}^{\prime}\right) \approx V_{c}(r)-r \beta \frac{d V_{c}(r)}{d r} Y_{20}\left(\theta^{\prime}\right)
$$

I. Hamamoto, PRC76 (2007) 054319

## PAMD Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{l s}(r)(\vec{l} \cdot \vec{s})+V_{v c}(\vec{r}, \xi)+h_{\text {core }}(\xi)
$$

- Extension of particle-rotor model
- Semi-microscopic coupling potential (Antysymmetrized Molecular Dynamics)
- Core excitations


# Low-lying Spectrum of ${ }^{17} \mathrm{C}$ 

Level Scheme


Mean Square Radii

| $r_{m s}(f m)$ | Nilsson | PAMD |
| :---: | :---: | :---: |
| gs-3/2+ | 4.18 | 4.03 |
| 1ex-1/2+ $^{+}$ | 6.44 | 5.24 |
| 2ex-5/2+ | 4.25 | - |

## Spectroscopy Factors

| SF | Conf | Nilsson | PAMD |
| :---: | :---: | :---: | :---: |
| gs-3/2+ | $d_{3 / 2,}, 0+$ | 0.01 | 0.03 |
| $1 e x-1 / 2^{+}$ | $s_{1 / 2}, 0^{+}$ | 0.67 | 0.51 |
| $2 e x-5 / 2^{+}$ | $d_{5 / 2}, 0^{+}$ | 0.33 | 0.32 |

## Wave Functions

${ }^{17} \mathrm{C}$ ground state $3 / 2^{+}$


$$
u_{j l}^{\lambda j^{\pi}}(r)=\sqrt{2} \sum_{\Omega}(-1)^{j+\Omega}\langle I 0 \mid j-\Omega J \Omega\rangle u_{j \Omega}^{\lambda j^{j}}(r)
$$

## Wave Functions

${ }^{17} \mathrm{C}$ first excited state $1 / 2^{+}$

${ }^{17} \mathrm{C}$ second excited state $5 / 2^{+}$


## Application to ${ }^{16} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{17} \mathrm{C}$



- A neutron transfer reaction has been studied applying the Adiabatic Distorted Wave Approximation (ADWA).
- Wave functions obtained with our two models are used as input overlaps.
- Calculations are compared with recent experimental data:
- GANIL, 17.2 MeV/nucleon beam [PLB811 (2020) 135939]


## Transfer to bound states

17C first excited State 1/2+

${ }^{17} \mathrm{C}$ second excited State $5 / 2^{+}$


## Transfer to bound states

Sum for the three bound states


## Transfer to the Continuum

Preliminary calculation for the continuum with PAMD model


## Transfer to the Continuum

Preliminary calculation for the continuum with PAMD model



## ${ }^{16} \mathrm{C}(\mathrm{d}, \mathrm{p})^{17} \mathrm{C}$



Comparison with experimental data in progress

## Application to ${ }^{17} \mathrm{C}+\mathrm{p}$ Breakup



- Extended Continuum-Discretized Coupled-Chanels calculations including core excitation (XCDCC) have been performed for study the break up reaction
- XCDCC - [PRC74 (2006) 014606, PRC89 (2014) 064609].
- The PAMD model is used to describe the ${ }^{17} \mathrm{C}$ system.
- Results are compared with the experimental data:
- RIKEN, $70 \mathrm{MeV} /$ nucleon beam [PLB660 (2008) 320]


## ${ }^{17} \mathrm{C}\left(\mathrm{p}, \mathrm{p}^{\prime}\right){ }^{16} \mathrm{C}+\mathrm{n}$



## ${ }^{17} \mathrm{C}\left(\mathrm{p}, \mathrm{p}^{\prime}\right){ }^{16} \mathrm{C}+\mathrm{n}$



## ${ }^{17} \mathrm{C}\left(\mathrm{p}, \mathrm{p}^{\prime}\right){ }^{16} \mathrm{C}+\mathrm{n}$



## Angular distribution for $E_{\text {rel }} \sim 1.5 \mathrm{MeV}$



## Conclusions

- Two models are considered for ${ }^{17} \mathrm{C}$, Nilsson and PAMD, which account for the effect of deformation in the weak- and strong-coupling limits.
- A theoretical study of the transfer reaction ${ }^{16} \mathrm{C}(\mathrm{d}, \mathrm{p})^{17} \mathrm{C}$ and the breakup reaction ${ }^{17} \mathrm{C}\left(\mathrm{p}, \mathrm{p}^{\prime}\right){ }^{16} \mathrm{C}+\mathrm{n}$ has been performed.
- Transfer calculations to bound states shows encouraging agreement with the existing data.
- The study of the transfer reaction populating unbound states is in progress.
- The analysis of the breakup data supports the presence of some resonances predicted by the PAMD model.
- Other weakly bound nuclei (e.g. ${ }^{11} \mathrm{Be},{ }^{19} \mathrm{C}$ ) and other reactions (e.g. ${ }^{11} \mathrm{Be}(\mathrm{p}, \mathrm{d}){ }^{10} \mathrm{Be}$ ) are studied with these models.
- PhD Grant
- PAIDI - Proyectos I+D+i P20_01247

Andalucía se mueve con Europa Junta de Andalucía


UNIÓN EUROPEA
Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

## Thanks for your attention

- Plan Estatal 2017-2020 - Proyectos I+D+i PID2020-114687GB-I00


## Backup

## Nilsson Diagram for ${ }^{17} \mathrm{C}$

$$
H_{s p}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{c}(r)+V_{l s}(r)(\vec{l} \cdot \vec{s})-r \beta \frac{d V_{c}(r)}{d r} Y_{20}\left(\theta^{\prime}\right)
$$



I. Hamamoto, PRC76 (2007) 054319

## Potentials

## ${ }^{16} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{17} \mathrm{C}$

## ${ }^{17} \mathrm{C}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{16} \mathrm{C}+\mathrm{n}$

- $\mathrm{p}-\mathrm{n}$ : Reid soft-core
- ${ }^{16} \mathrm{C}-\mathrm{n}$ : PAMD/Nilsson
- ${ }^{16} \mathrm{C}-\mathrm{d}$ : finite-range adiabatic potential (Johnson-Tandy)
- p-n: fitted Gaussian potential
- ${ }^{16} \mathrm{C}-\mathrm{n}:$ PAMD
- ${ }^{17} \mathrm{C}-\mathrm{p}:$ Koning-Delaroche (KD02)
- ${ }^{17} \mathrm{C}-\mathrm{p}:$ Chapel-Hill (CH89)


# Neutron Transfer Reactions 

## ${ }^{16} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{17} \mathrm{C}$



