Extracting the nucleon axial form factor from Lattice QCD using chiral perturbation theory Fernando Alvarado (falvar@ific.uv.es) Luis Alvarez-Ruso EUNPC 2022 October 27, 2022 ## **Nucleon Axial Form Factor** - Nucleon Axial Form Factor, $F_A(q^2)$ - Electroweak interactions open a doorway to fundamental properties of strong interacting matter: spins distribution - $A_{\mu}^{i}(x) = \bar{q}(x)\gamma_{\mu}\gamma_{5}\frac{\tau^{i}}{2}q(x)$ - $\begin{array}{l} \blacktriangleright \langle N(p')|A_{\mu}^{i}|N(p)\rangle = \\ \bar{u}\left\{\gamma_{\mu}F_{A}(q^{2}) + \frac{q_{\mu}}{2m_{N}}G_{P}(q^{2})\right\}\gamma_{5}\frac{\tau^{i}}{2}u(p) \end{array}$ $$\blacktriangleright F_A(q^2) = g_A \left[1 + \frac{1}{6} \langle r_A^2 \rangle q^2 + \mathcal{O}(q^4) \right]$$ - ▶ g_A and F_A dependence in q^2 are necessary in V oscillations experiments - \triangleright μ capture, β -decay - ► Chiral Perurbation Theory calculation of F_A ⇒ extract $\langle r_A^2 \rangle$ from lattice QCD without ad-hoc parametrization # Axial form factor, F_A #### ► Empirical determinations Rely on neutrino-induced charged-current quasielastic scattering on deuteron targets, muon capture in muonic hydrogen and pion electro-production. #### ► LQCD - Several studies on $F_A(q^2)$ \longrightarrow technical difficulties \Longrightarrow significantly improved control of the systematic error - ► Tension between LQCD and empirical determinations - Experimental and lattice q^2 parametrisation: - dipole ansatz - z-expansion $$\Longrightarrow$$ different $\langle r_A^2 \rangle$ # Axial form factor, F_A #### Empirical determinations Rely on neutrino-induced charged-current quasielastic scattering on deuteron targets, muon capture in muonic hydrogen and pion electro-production. #### ► LQCD - Several studies on $F_A(q^2)$ \longrightarrow technical difficulties \Longrightarrow significantly improved control of the systematic error - ► Tension between LQCD and empirical determinations - Experimental and lattice q^2 parametrisation: - dipole ansatz - z-expansion $$\Longrightarrow$$ different $\langle r_A^2 \rangle$ ### ightharpoonup Chiral Perturbation Theory (χ PT) - ► EFT for OCD at low energy - QCD based parametrization of q^2 and M_{π} dependencies \implies extrapolate lattice results to the phys. point and extract $\langle r_A^2 \rangle$ from the lattice simulations - Account for finite volume, lattice spacing and excited states - Determining χPT LECs from the lattice ⇒ predicting other observables # F_A Calculation - NNLO $\mathcal{O}(p^4)$ in relativistic Baryon χ PT - Baryon χPT - Problem: $\underline{m_B \nrightarrow 0} \Rightarrow \text{Power Counting Breaking (PCB)}$ - ⇒ additional finite renormalisation: extended on mass-shell (EOMS) - PCB terms absorbed by LECs - Covariance and analytic properties of loops preserved appropriate for chiral extrapolations - ightharpoonup Explicit $\Delta(1232)$ - ► SSE: $\delta = m_{\Lambda} m_{N} \sim \mathcal{O}(p)$ - $F_A = \mathring{g}_A + 4d_{16}M_{\pi}^2 + d_{22}t + \text{loops}(M_{\pi}, t)$ - $\mathcal{L}_{\pi N}^{(1)} \Longrightarrow \mathring{g}_{A}, \quad \mathscr{L}_{\pi N}^{(3)} \Longrightarrow d_{16},$ $\mathscr{L}_{\pi N}^{(2)} \Longrightarrow c_{1}, c_{2}, c_{3}, c_{4}$ - $\mathcal{L}_{\pi N\Delta}^{(1)} \Longrightarrow h_A, g_1,$ $\mathcal{L}_{\pi^2}^{(2)} \Longrightarrow a_1, \quad \mathcal{L}_{\pi^{N\Delta}}^{(2)} \Longrightarrow b_4, b_5$ Figure: $\mathcal{O}(p)$ and $\mathcal{O}(p^3)$ (w. f. renormalisation not shown) Figure: $\mathcal{O}(p^4)$ ## Combined fit to lattice data #### Lattice data - Many recent works ⇒ substantial improvements - ► RQCD^[1] + PNDME^[2] + "Mainz"^[3] + PACS^[4] + ETMC^[5] - data without q^2 , finite volume, lattice spacing or M_{π} extrapolation - large vol. only, $M_{\pi}L \ge 3.5$ - we correct lattice spacing a: $F_A(a) = F_A + \sum_i (x_i + ty_i) a^{n_i}$ [2] Park et al. 2103.05599 [3] Meyer et al. Modern Phys. A 34 (2019) [4] Shintani et al. PRD 102 (2020) [5] Alexandrou et al. PRD 103 (2021) ^[1] Bali et al. JHEP 05 (2020) $$F_A(q^2=0) = \overline{g_A}$$ - $g_A(M_\pi)$: interesting puzzle by itself - we saw that (\triangle) LECs from πN elastic and inelastic scattering fail to describe its M_{π} dependence Alvarado & Alvarez-Ruso PRD 105 (2021) - Differences between $\mathcal{O}(p^3)$ and $\mathcal{O}(p^4)$ are considerable (at larger M_π) and provide a measure of the systematic error [6] arising from the truncation of the perturbative expansion: $\Delta g_{A\chi}^{(4)} =$ $$\max \left\{ \left(\frac{M_{\pi}}{\Lambda} \right)^{4} |\mathring{g}_{A}|, \left(\frac{M_{\pi}}{\Lambda} \right)^{2} |g_{A}^{(3)}|, \frac{M_{\pi}}{\Lambda} |g_{A}^{(4)}| \right\}$$ - $ightharpoonup \Delta F_{A\chi}$ is added to LQCD errors in the χ^2 - ► LECs have naturalness priors - χ^2 plateau $\Rightarrow M_{\pi}^{\text{cut}} \simeq 400 \text{ MeV}, Q_{\text{cut}}^2 = 0.36 \text{ GeV}^2$ - $ightharpoonup \Delta$ baryon is a necessary d.o.f. - Good fit: very accurate description at the physical point - \triangleright $\mathcal{O}(p^5)$ still needed for full convergence $$F_A(q^2=0) = \boxed{g_A}$$ \blacktriangleright Axial charge results from $F_A(q^2)$ fit - ▶ $g_A(M_{\pi phys}) = 1.273 \pm 0.014$ vs $g_A^{\text{exp}} = 1.2754(13)_{\text{exp}}(2)_{\text{RC}} \Rightarrow \text{excellent}$ agreement with exp. vs $g_A^{\text{FLAG}} = 1.246 \pm 0.028$ - $g_A(M_\pi) = \mathring{g}_A + 4 \frac{d_{16}M_\pi^2}{16} + \text{loop}(M_\pi)$ $\longrightarrow M_{\pi}$ dependence of long range nuclear forces - ightharpoonup Can not be extracted from πN elastic scattering - In line with $d_{16} = -1.0 \pm 1.0 \text{ GeV}^{-2}$ from $\pi N \rightarrow \pi \pi N$ [6] [6] Siemens et al. PRC 96 (2017)(value converted to standard EOMS) $$F_A = g_A \left(1 + \frac{1}{6} \middle| \langle r_A^2 \rangle \middle| q^2 \right) \text{ axial radius}$$ $$(\text{Bodek}) = \text{Bodek}, \text{ Eur. Phys. J. C 53, 349 (2008)} \\ (\text{Meyer}) = \text{Meyer, PRD 93, 113015 (2016)} \\ (\text{Hill}) = \text{Hill}, \text{ Rept. Prog. Phys. 81 (2018)} \right)$$ $$= \text{Experiments}$$ $$\text{Experiments}$$ $$\text{Experiments}$$ $$\text{Experiments}$$ $$\text{Dr. Phys. 81 (2018)}$$ $$\text{Dr. Particles}$$ $$\text{Dr. Phys. 81 (2018)}$$ $$\text{Dr. Particles}$$ $$\text{$$ - Our $\mathcal{O}(p^4)$ χ PT extraction: - \blacktriangleright M_{π} slope driven by loops with Δ - $d_{22} = 0.29 \pm 1.69$ GeV⁻² (no assumptions on ΔΔπ coupling enlarges error) 0.1 0.2 d₂₂ compatible with 𝒪(p³) π electroprod. 0 - $\langle r_A^2 \rangle (M_{\text{phys}}) = 0.293 \pm 0.044 \text{ fm}^2$ - Empirical determinations (model dependent) are in tension with ours and with most of LQCD extractions 0.3 0.4 $\langle r_A^2 \rangle$ (fm²) 0.5 0.6 0.7 - Tipically the extracted $\langle r_A^2 \rangle^{\text{phys}}$ value varies depending on the parametrisation - Our QCD based parametrisation leads to a value in line with most of the individual LQCD extractions_ Fernando Alvarado 8/12 ## **Conclusions** - $F_A(q^2)$ essential in v oscillations - We extract $F_A(q^2)$ from LQCD using $\mathcal{O}(p^4)$ relativistic χ PT - ▶ Our combined fit $\mathcal{O}(p^4)$ with Δ successfully describes the lattice data - Δ is a necessary d.o.f. - $g_A(M_{\pi \text{phys}}) = 1.273 \pm 0.014 \text{ vs } g_A^{\text{exp}} = 1.2754(13)_{\text{exp}}(2)_{\text{RC}} \Rightarrow \text{excellent agreement with exp.}$ - There is tension between the experimental and lattice extraction of $\langle r_A^2 \rangle$ - We extract $(r_A^2)^{\text{phys}} = 0.291 \pm 0.052 \text{ fm}^2$ without ad hoc parametrisations - ▶ $d_{16} = -1.46 \pm 1.00 \text{ GeV}^{-2}$, $d_{22} = 0.29 \pm 1.69 \text{ GeV}^{-2}$ and other LECs have been extracted \implies agreement with different determinations at the physical point Thanks! Any questions? ## **Nucleon Axial Form Factor: Extra** - \blacktriangleright Dipole ansatz: $F_A(q^2)=g_A(1-\frac{q^2}{M_A^2})^{-2}$ - ightharpoonup z-exp.: $F_A(q^2) = \sum_k a_k z^k(q^2)$, with $z(q^2, t_{\text{cut}}, t_0)$ # Extra Figure: Pion-mass dependence of g_A at $\mathcal{O}(p^3)$ (red) and $\mathcal{O}(p^4)$ (blue) using phenomenological input from Ref. ? and 1σ error bands. # **Extra** | | Ø(p ³) ∆ | $\mathcal{O}(p^4) \Delta$ | $\mathcal{O}(p^3) \Delta$ | $\mathcal{O}(p^4) \Delta$ | |---|-----------------------|---------------------------|---------------------------|---| | å _A (free) | 1.1782 ± 0.0073 | | 1.2041 ± 0.0074 | 1.274 ± 0.041 | | $d_{16} (\text{GeV}^{-2}) (\text{free})$ | -1.021 ± 0.048 | | 0.983 ± 0.062 | -1.46 ± 1.00 | | d_{22} (GeV ⁻²) (free) | 1.275 ± 0.086 | | 3.77 ± 1.96 | 0.29 ± 1.69 large error (free g_1) | | h_A | - | - | 1.35 | 1.35 | | g ₁ (free) | - | - | -0.69 ± 0.69 | 0.66 ± 0.56 | | c ₁ (GeV ⁻¹) | - | -0.89 ± 0.06 | - | -1.15 ± 0.05 | | c ₂ (GeV ⁻¹) | - | 3.38 ± 0.15 | - | 1.57 ± 0.10 | | c ₃ (GeV ⁻¹) | - | -4.59 ± 0.09 | - | -2.54 ± 0.05 | | c4 (GeV ⁻¹) | - | 3.31 ± 0.13 | - | 2.61 ± 0.10 | | $a_1 (\text{GeV}^{-1})$ | - | - | - | 0.90 | | $b_1 (\text{GeV}^{-2}) (\text{free})$ | - | - | - | -0.27 ± 4.96 | | b_2 (GeV ⁻²) (free) | - | - | - | 2.27 ± 2.28 | | \widetilde{b}_4 (GeV ⁻²) (free) | - | - | - | -12.48 ± 1.28 | | $x_1 \text{ (fm}^{-2}\text{) (free)}$ | -8.4 ± 5.8 | - | -5.6 ± 5.9 | -0.25 ± 16.5 (consistent) | | x_2 (fm ⁻²) (free) | -8.6 ± 2.6 | - | -7.1 ± 2.6 | -6.36 ± 4.20 | | x_3 (fm ⁻¹) (free) | -0.25 ± 0.21 | - | -0.08 ± 0.22 | 0.36 ± 0.47 | | $y_1 (\text{fm}^{-2} \text{GeV}^{-2}) (\text{free})$ | -100 ± 40 | - | -76 ± 44 | -64 ± 121 | | $y_2 \text{ (fm}^{-2} \text{ GeV}^{-2} \text{) (free)}$ | -31 ± 21 | - | -21 ± 22 | -15 ± 46 | | $y_3 \text{ (fm}^{-1} \text{ GeV}^{-2}\text{) (free)}$ | -0.63 ± 1.49 | - | 0.36 ± 1.63 | 2.54 ± 3.98 | | m (GeV) | 0.874 | 0.874 | 0.855 | 0.855 | | \mathring{m}_{Δ} (GeV) | - | - | 1.166 | 1.166 | | χ^2/dof | 46.13/(127-9) = 0.391 | | 39.17/(127-10) = 0.326 | 14.64/(127-13) = 0.129 | | χ_0^2/dof | 857.31/(127-9) = 7.27 | | 533.87/(127 - 10) = 4.45 | 196.58/(127 - 13) = 1.724 |