Extracting the nucleon axial form factor from Lattice QCD using chiral perturbation theory

Fernando Alvarado (falvar@ific.uv.es) Luis Alvarez-Ruso

EUNPC 2022

October 27, 2022

Nucleon Axial Form Factor

- Nucleon Axial Form Factor, $F_A(q^2)$
 - Electroweak interactions open a doorway to fundamental properties of strong interacting matter: spins distribution
 - $A_{\mu}^{i}(x) = \bar{q}(x)\gamma_{\mu}\gamma_{5}\frac{\tau^{i}}{2}q(x)$
 - $\begin{array}{l} \blacktriangleright \langle N(p')|A_{\mu}^{i}|N(p)\rangle = \\ \bar{u}\left\{\gamma_{\mu}F_{A}(q^{2}) + \frac{q_{\mu}}{2m_{N}}G_{P}(q^{2})\right\}\gamma_{5}\frac{\tau^{i}}{2}u(p) \end{array}$

$$\blacktriangleright F_A(q^2) = g_A \left[1 + \frac{1}{6} \langle r_A^2 \rangle q^2 + \mathcal{O}(q^4) \right]$$

- ▶ g_A and F_A dependence in q^2 are necessary in V oscillations experiments
- \triangleright μ capture, β -decay
- ► Chiral Perurbation Theory calculation of F_A ⇒ extract $\langle r_A^2 \rangle$ from lattice QCD without ad-hoc parametrization

Axial form factor, F_A

► Empirical determinations

Rely on neutrino-induced charged-current quasielastic scattering on deuteron targets, muon capture in muonic hydrogen and pion electro-production.

► LQCD

- Several studies on $F_A(q^2)$ \longrightarrow technical difficulties \Longrightarrow significantly improved control of the systematic error
- ► Tension between LQCD and empirical determinations
- Experimental and lattice q^2 parametrisation:

- dipole ansatz - z-expansion
$$\Longrightarrow$$
 different $\langle r_A^2 \rangle$

Axial form factor, F_A

Empirical determinations

 Rely on neutrino-induced charged-current quasielastic scattering on deuteron targets, muon capture in muonic hydrogen and pion electro-production.

► LQCD

- Several studies on $F_A(q^2)$ \longrightarrow technical difficulties \Longrightarrow significantly improved control of the systematic error
- ► Tension between LQCD and empirical determinations
- Experimental and lattice q^2 parametrisation:

- dipole ansatz - z-expansion
$$\Longrightarrow$$
 different $\langle r_A^2 \rangle$

ightharpoonup Chiral Perturbation Theory (χ PT)

- ► EFT for OCD at low energy
- QCD based parametrization of q^2 and M_{π} dependencies \implies extrapolate lattice results to the phys. point and extract $\langle r_A^2 \rangle$ from the lattice simulations
- Account for finite volume, lattice spacing and excited states
- Determining χPT LECs from the lattice
 ⇒ predicting other observables

F_A Calculation

- NNLO $\mathcal{O}(p^4)$ in relativistic Baryon χ PT
- Baryon χPT
 - Problem: $\underline{m_B \nrightarrow 0} \Rightarrow \text{Power Counting Breaking (PCB)}$
 - ⇒ additional finite renormalisation: extended on mass-shell (EOMS)
 - PCB terms absorbed by LECs
 - Covariance and analytic properties of loops preserved
 appropriate for chiral extrapolations
- ightharpoonup Explicit $\Delta(1232)$
 - ► SSE: $\delta = m_{\Lambda} m_{N} \sim \mathcal{O}(p)$
- $F_A = \mathring{g}_A + 4d_{16}M_{\pi}^2 + d_{22}t + \text{loops}(M_{\pi}, t)$
 - $\mathcal{L}_{\pi N}^{(1)} \Longrightarrow \mathring{g}_{A}, \quad \mathscr{L}_{\pi N}^{(3)} \Longrightarrow d_{16},$ $\mathscr{L}_{\pi N}^{(2)} \Longrightarrow c_{1}, c_{2}, c_{3}, c_{4}$
 - $\mathcal{L}_{\pi N\Delta}^{(1)} \Longrightarrow h_A, g_1,$ $\mathcal{L}_{\pi^2}^{(2)} \Longrightarrow a_1, \quad \mathcal{L}_{\pi^{N\Delta}}^{(2)} \Longrightarrow b_4, b_5$

Figure: $\mathcal{O}(p)$ and $\mathcal{O}(p^3)$ (w. f. renormalisation not shown)

Figure: $\mathcal{O}(p^4)$

Combined fit to lattice data

Lattice data

- Many recent works ⇒ substantial improvements
- ► RQCD^[1] + PNDME^[2] + "Mainz"^[3] + PACS^[4] + ETMC^[5]
- data without q^2 , finite volume, lattice spacing or M_{π} extrapolation
- large vol. only, $M_{\pi}L \ge 3.5$
- we correct lattice spacing a: $F_A(a) = F_A + \sum_i (x_i + ty_i) a^{n_i}$

[2] Park et al. 2103.05599

[3] Meyer et al. Modern Phys. A 34 (2019)

[4] Shintani et al. PRD 102 (2020)

[5] Alexandrou et al. PRD 103 (2021)

^[1] Bali et al. JHEP 05 (2020)

$$F_A(q^2=0) = \overline{g_A}$$

- $g_A(M_\pi)$: interesting puzzle by itself
 - we saw that (\triangle) LECs from πN elastic and inelastic scattering fail to describe its M_{π} dependence Alvarado & Alvarez-Ruso PRD 105 (2021)
- Differences between $\mathcal{O}(p^3)$ and $\mathcal{O}(p^4)$ are considerable (at larger M_π) and provide a measure of the systematic error [6] arising from the truncation of the perturbative expansion: $\Delta g_{A\chi}^{(4)} =$

$$\max \left\{ \left(\frac{M_{\pi}}{\Lambda} \right)^{4} |\mathring{g}_{A}|, \left(\frac{M_{\pi}}{\Lambda} \right)^{2} |g_{A}^{(3)}|, \frac{M_{\pi}}{\Lambda} |g_{A}^{(4)}| \right\}$$

- $ightharpoonup \Delta F_{A\chi}$ is added to LQCD errors in the χ^2
- ► LECs have naturalness priors
- χ^2 plateau $\Rightarrow M_{\pi}^{\text{cut}} \simeq 400 \text{ MeV}, Q_{\text{cut}}^2 = 0.36 \text{ GeV}^2$
- $ightharpoonup \Delta$ baryon is a necessary d.o.f.
- Good fit: very accurate description at the physical point
- \triangleright $\mathcal{O}(p^5)$ still needed for full convergence

$$F_A(q^2=0) = \boxed{g_A}$$

 \blacktriangleright Axial charge results from $F_A(q^2)$ fit

- ▶ $g_A(M_{\pi phys}) = 1.273 \pm 0.014$ vs $g_A^{\text{exp}} = 1.2754(13)_{\text{exp}}(2)_{\text{RC}} \Rightarrow \text{excellent}$ agreement with exp. vs $g_A^{\text{FLAG}} = 1.246 \pm 0.028$
- $g_A(M_\pi) = \mathring{g}_A + 4 \frac{d_{16}M_\pi^2}{16} + \text{loop}(M_\pi)$

 $\longrightarrow M_{\pi}$ dependence of long range nuclear forces

- ightharpoonup Can not be extracted from πN elastic scattering
- In line with $d_{16} = -1.0 \pm 1.0 \text{ GeV}^{-2}$ from $\pi N \rightarrow \pi \pi N$ [6]

[6] Siemens et al. PRC 96 (2017)(value converted to standard EOMS)

$$F_A = g_A \left(1 + \frac{1}{6} \middle| \langle r_A^2 \rangle \middle| q^2 \right) \text{ axial radius}$$

$$(\text{Bodek}) = \text{Bodek}, \text{ Eur. Phys. J. C 53, 349 (2008)} \\ (\text{Meyer}) = \text{Meyer, PRD 93, 113015 (2016)} \\ (\text{Hill}) = \text{Hill}, \text{ Rept. Prog. Phys. 81 (2018)} \right)$$

$$= \text{Experiments}$$

$$\text{Experiments}$$

$$\text{Experiments}$$

$$\text{Experiments}$$

$$\text{Dr. Phys. 81 (2018)}$$

$$\text{Dr. Particles}$$

$$\text{Dr. Phys. 81 (2018)}$$

$$\text{Dr. Particles}$$

$$\text{$$

- Our $\mathcal{O}(p^4)$ χ PT extraction:
 - \blacktriangleright M_{π} slope driven by loops with Δ
 - $d_{22} = 0.29 \pm 1.69$ GeV⁻² (no assumptions on ΔΔπ coupling enlarges error)

0.1

0.2

d₂₂ compatible with 𝒪(p³) π electroprod.

0

- $\langle r_A^2 \rangle (M_{\text{phys}}) = 0.293 \pm 0.044 \text{ fm}^2$
- Empirical determinations (model dependent) are in tension with ours and with most of LQCD extractions

0.3

0.4

 $\langle r_A^2 \rangle$ (fm²)

0.5

0.6

0.7

- Tipically the extracted $\langle r_A^2 \rangle^{\text{phys}}$ value varies depending on the parametrisation
- Our QCD based parametrisation leads to a value in line with most of the individual LQCD extractions_

Fernando Alvarado 8/12

Conclusions

- $F_A(q^2)$ essential in v oscillations
- We extract $F_A(q^2)$ from LQCD using $\mathcal{O}(p^4)$ relativistic χ PT
- ▶ Our combined fit $\mathcal{O}(p^4)$ with Δ successfully describes the lattice data
 - Δ is a necessary d.o.f.
 - $g_A(M_{\pi \text{phys}}) = 1.273 \pm 0.014 \text{ vs } g_A^{\text{exp}} = 1.2754(13)_{\text{exp}}(2)_{\text{RC}} \Rightarrow \text{excellent agreement with exp.}$
 - There is tension between the experimental and lattice extraction of $\langle r_A^2 \rangle$
 - We extract $(r_A^2)^{\text{phys}} = 0.291 \pm 0.052 \text{ fm}^2$ without ad hoc parametrisations
- ▶ $d_{16} = -1.46 \pm 1.00 \text{ GeV}^{-2}$, $d_{22} = 0.29 \pm 1.69 \text{ GeV}^{-2}$ and other LECs have been extracted \implies agreement with different determinations at the physical point

Thanks!
Any questions?

Nucleon Axial Form Factor: Extra

- \blacktriangleright Dipole ansatz: $F_A(q^2)=g_A(1-\frac{q^2}{M_A^2})^{-2}$
- ightharpoonup z-exp.: $F_A(q^2) = \sum_k a_k z^k(q^2)$, with $z(q^2, t_{\text{cut}}, t_0)$

Extra

Figure: Pion-mass dependence of g_A at $\mathcal{O}(p^3)$ (red) and $\mathcal{O}(p^4)$ (blue) using phenomenological input from Ref. ? and 1σ error bands.

Extra

	Ø(p ³) ∆	$\mathcal{O}(p^4) \Delta$	$\mathcal{O}(p^3) \Delta$	$\mathcal{O}(p^4) \Delta$
å _A (free)	1.1782 ± 0.0073		1.2041 ± 0.0074	1.274 ± 0.041
$d_{16} (\text{GeV}^{-2}) (\text{free})$	-1.021 ± 0.048		0.983 ± 0.062	-1.46 ± 1.00
d_{22} (GeV ⁻²) (free)	1.275 ± 0.086		3.77 ± 1.96	0.29 ± 1.69 large error (free g_1)
h_A	-	-	1.35	1.35
g ₁ (free)	-	-	-0.69 ± 0.69	0.66 ± 0.56
c ₁ (GeV ⁻¹)	-	-0.89 ± 0.06	-	-1.15 ± 0.05
c ₂ (GeV ⁻¹)	-	3.38 ± 0.15	-	1.57 ± 0.10
c ₃ (GeV ⁻¹)	-	-4.59 ± 0.09	-	-2.54 ± 0.05
c4 (GeV ⁻¹)	-	3.31 ± 0.13	-	2.61 ± 0.10
$a_1 (\text{GeV}^{-1})$	-	-	-	0.90
$b_1 (\text{GeV}^{-2}) (\text{free})$	-	-	-	-0.27 ± 4.96
b_2 (GeV ⁻²) (free)	-	-	-	2.27 ± 2.28
\widetilde{b}_4 (GeV ⁻²) (free)	-	-	-	-12.48 ± 1.28
$x_1 \text{ (fm}^{-2}\text{) (free)}$	-8.4 ± 5.8	-	-5.6 ± 5.9	-0.25 ± 16.5 (consistent)
x_2 (fm ⁻²) (free)	-8.6 ± 2.6	-	-7.1 ± 2.6	-6.36 ± 4.20
x_3 (fm ⁻¹) (free)	-0.25 ± 0.21	-	-0.08 ± 0.22	0.36 ± 0.47
$y_1 (\text{fm}^{-2} \text{GeV}^{-2}) (\text{free})$	-100 ± 40	-	-76 ± 44	-64 ± 121
$y_2 \text{ (fm}^{-2} \text{ GeV}^{-2} \text{) (free)}$	-31 ± 21	-	-21 ± 22	-15 ± 46
$y_3 \text{ (fm}^{-1} \text{ GeV}^{-2}\text{) (free)}$	-0.63 ± 1.49	-	0.36 ± 1.63	2.54 ± 3.98
m (GeV)	0.874	0.874	0.855	0.855
\mathring{m}_{Δ} (GeV)	-	-	1.166	1.166
χ^2/dof	46.13/(127-9) = 0.391		39.17/(127-10) = 0.326	14.64/(127-13) = 0.129
χ_0^2/dof	857.31/(127-9) = 7.27		533.87/(127 - 10) = 4.45	196.58/(127 - 13) = 1.724