Recent Heavy-Ion Physics Results from ATLAS and CMS

Olga Evdokimov (University of Illinois at Chicago) for the ATLAS and CMS Collaborations

Outline:

 "Standard Model" of heavy ion collisions: a complex dynamics of intrinsically many-body system

A (biased) selection of recent experimental results from ATLAS and CMS on:

- Initial state properties
- QGP properties through heavy flavor and quarkonia
- Progress in jet quenching studies
- Ultra-peripheral collisions: QED meets QCD

Introduction: "tools of the trade"

• Azimuthal anisotropies ("flows"): Fourier coefficients v_1, v_2, v_3, v_4, v_5

$$\frac{d^{3}N}{p_{T}dp_{T}d\eta d\phi} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}d\eta} \left(1 + \sum_{k=1}^{\infty} 2v_{n=km} \left(p_{T}, \eta\right) \cos\left[n\left(\phi - \Psi_{m}\right)\right]\right)$$

Glauber-based picture:

• Nuclear modification factors
$$\mathbf{R}_{AA}$$
 $R_{AA}(p_T) = \frac{d^2N^{AA}/dp_Td\eta}{\langle N_{bin} \rangle d^2N^{pp}/dp_Td\eta}$

*Number of binary collisions N_{bin} is extracted from Glauber calculations

Anisotropies in small systems

ATLAS-CONF-2022-020

pp 5.02 TeV trk-clus

Nonflow subtracted

Nonflow subtracted

Xe+Xe 5.44 TeV trk-twr

Nonflow subtracted

10³

A Raw Fourier

pp 13 TeV trk-clus

Raw Fourier

A Raw Fourier

• Understanding the initial state:

ATLAS Preliminary

 $4.0 < |\eta^{\text{ref}}| < 4.9$

 $|\eta^{a}| < 2.5, \ 0.5 < p_{-}^{a} < 5.0$

Anisotropies in small systems

CMS-PAS-HIN-21-012

Origins of collectivity in small systems can be explored through correlations between average p_T and multiparticle cumulants:

- v₂-p_T: sign change with N_{ch} (due to initial momentum anisotropy predicted by Color Glass Condensate framework):
 - Could be seen in the data but disappear with large pseudorapidity gap
 - Measurements are sensitive to nonflow effects (jet/minijet correlations, resonance decays,...)
- v_3 - p_T : no sign change
- Model comparisons:

IP-Glasma+MUSIC+UrQMD Hydro

100

 $N_{ch} (0.5 < p_{_T} < 5.0 \; GeV, \; |\eta| < 2.4)$

150 200

50

Anisotropies in small systems

Understanding the initial state & search for final state effects:

CMS-PAS-HIN-21-001

- New results on Y(1S) flow in 8 TeV pPb: no significant v_2 even in high multiplicity events. Similarly, no significant v_2 was seen in PbPb
- The expectation of similar v_2 for Y and J/ψ (CGC) seem not to be favored by the data
- No sensitivity to initial geometry for Y measurements with current precision

Heavy flavor: nuclear modification

CMS PRL. 128 (2022) 252301

- Nuclear modification for prompt- and non-prompt D^0 , non-prompt J/ψ , B^\pm
- Mid-p_T : flavor dependence of energy loss • $R_{AA}(b) > R_{AA}(c) \sim R_{AA}(\text{light flavors})$
- High p_T : radiative energy loss dominates $R_{AA}(b) \sim R_{AA}(c) \sim R_{AA}(\text{light flavors})$
- ullet New updates: high precision simultaneous measurements of R_{AA} and v_2

Heavy flavor: nuclear modification

New high precision measurements of heavy flavor nuclear modification factors from ATLAS

- p_{T} [GeV]

 Energy loss mechanisms and QGP expansion modeling R_{AA} for muons from HF decays
- Mass splitting at low p_T, similar behavior at high p_T
- Need measurements of both R_{AA} and v₂ for separated charm and bottom for rigorous constraints on models

Heavy flavor: nuclear modification

Back-to-back muon pairs - dominated by HF decays (both opposite and same sign pairs are signal)
 ATLAS-CONF-2022-022

- Collisional vs. radiative energy loss: possible differences in the angular correlations
- Expected centrality trend in binary-scaled yields
- No significant changes in the widths of correlated signal

Heavy flavor: anisotropies

- ATLAS: muons from HF decays

 ATLAS PLB 829 (2022) 137077
- CMS: prompt and non-prompt D⁰

 CMS-PAS-HIN-21-003

Consistent picture:

- Significant v₂ for charm and bottom
- Initial raise consistent with hydro expansion; high p_T – path-length dependence of energy loss
- Higher degree of parton-medium coupling for charm than bottom

Quarkonia: anisotropies

• What about quarkonia? Everything "flows"!

- Hidden vs. open charm:
 - high p_T no mass dependence; path-length dependent Eloss
 - Low p_T : $v_2(h^{\pm}) > v_2(prompt D^0) > v_2(prompt J/\psi) constituent quark differences? Recombination!$

- Charm vs. bottom:
 - Prompt J/ψ : significant v_2 up to high p_T ; $b \to J/\psi$: smaller v_2 , high p_T behavior?
 - Stronger (?) v_2 for prompt $\psi(2S)$ difference in regeneration contributions?

Quarkonia: melting

- Clear signature of sequential melting of $\Upsilon(ns)$ states: nuclear modification factors: $\Upsilon(3S) < \Upsilon(2S) < \Upsilon(1S)$
- First direct observation of $\Upsilon(3S)$ in heavy ion collisions

Jet quenching: nuclear modifications

- Search for color-charge, mass, and/or flavor effects in energy loss:
 - Photon-tagged jets (higher fraction of quark-initiated jets): less suppressed compared to inclusive jets
 - b-jets (muon tagger): less suppressed compared to inclusive jets

Olga Evdokimov (University of Illinois at Chicago)

Jet quenching: energy flow changes

- Energy redistribution in jet constituents: PbPb/pp jet shape ratios for inclusive and heavy flavor jets
- Jet momentum is shifted from small to large angles; carried by softer constituents than in pp
- The large-R momentum excess in PbPb vs pp measurement is larger for b jets than for inclusive jets larger "wake" caused by heavy quarks?

Jet quenching: jet size dependence

- Nuclear modifications for jets of different sizes: systematic studies of R, centrality and jet p_T dependence
- Radius dependence via double R_{AA} ratios:
 - Surprisingly consistent with unity for all R and p_T selections studies
 - Medium response is important to capture the data trend

Jet quenching: opening angle dependence

Soft drop grooming $(\beta = 0 \text{ and } z_{cut} = 0.2)$

r_g – opening angle of the hardest splitting

- Detailed measurement of jet energy loss dependence on opening angles:
 - R_{AA} depends significantly on opening angle of hardest splitting
 - Jet p_T dependence in r_g but not R_{AA} distributions

Jet and dijet anisotropies

CMS arXiv:2210.08325

- Measurements of v_2 , v_3 , and v_4 : ATLAS jets 71< p_T <398GeV, CMS dijet : p_{T1} >120 GeV, p_{T2} >50 GeV, $\Delta \phi > 5/6$
- Significant v₂ for all centralities (most central ATLAS?) constrains path-length dependence of quenching
- v₃, v₄ –sensitivity to density/geometry fluctuations. Differences in selections/non-flow? Uncertainty-limited

UPC dilepton production: $\gamma\gamma \rightarrow ee$

- •UPC dilepton production is one of the fundamental processes in $\gamma\gamma$ interaction
- Exclusive $\gamma\gamma \rightarrow ee$ benchmark process for other γ induced processes
- Provides new constraints on photon fluxes from nuclei

UPC dilepton production: $\gamma\gamma \rightarrow \mu\mu$

- Forward neutron multiplicity dependence of dimuon distributions:
 - Events with neutrons have a harder $m_{\mu\mu}$ spectrum and narrower $y_{\mu\mu}$

- Dimuon acoplanarity:
 - Clear impact parameter dependence
 - QED calculations need b-dependence of initial photon p_T

UPC dilepton production: $\gamma\gamma \rightarrow \tau\tau$

CMS arXiv:2206.05192

ATLAS arXiv:2204.13478

- Observation of $\gamma\gamma \to \tau\tau$ by both CMS and ATLAS in UPC heavy ion collisions
- Constrains the anomalous magnetic moment $a_{\tau} = \frac{(g-2)_{\tau}}{2}$ for the first time at the LHC

Summary and Outlook

- •Wealth of experimental data on initial state, collision dynamics, and medium properties at LHC energies
- •Flavor dependence on parton-medium coupling:
 - $v_2(s, light) \gtrsim v_2(c) > v_2(b)$; $R_{AA}(b) > R_{AA}(c) \approx R_{AA}(s, light)$
 - New insights on quarkonia melting
- •Jet probes explore color-charge and parton flavor dependance of quenching and highlight the importance of medium response
- Unique UPC program provides new constraints for the theory

More work to be done!

Heavy flavor: anisotropies

PRL 129 (2022), 022001

What about event-by-event fluctuations?

$$v_2{4} / v_2{2}$$

- Similar fluctuations for D⁰ and charged hadrons?
- Inclusion of collisional energy loss allows to reproduce data trends better