

Highlights from the heavy-ion program of the STAR and BRAHMS experiments at RHIC

Daniel Kikoła for the STAR collaboration

European Nuclear Physics Conference 2022

STAR

- Heavy-flavor production in HIC
- Search for Chiral Magnetic Effect in isobar collisions

Recent results from Beam energy Scan II program

BRAHMS

 Study of the baryon stopping in p+p and Au+Au collisions

BRAHMS results courtesy of Flemming Videbaek

The STAR detector

Search for Chiral Magnetic Effect in isobar collisions

The **Chiral Magnetic Effect (CME)** is predicted to occur as a consequence of a local violation of P and CP symmetries of the strong interaction in a strong electromagnetic field generated in relativistic heavyion collisions.

Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field.

https://www.bnl.gov/newsroom/news.php?a=119062

Search for Chiral Magnetic Effect in isobar collisions

Search for Chiral Magnetic Effect in isobar collisions

No CME signature satisfying the predefined criteria observed in blind analysis of isobar collisions **Deviation of CME baseline from unity** → **multiplicity difference & non-flow correlations**

CME: study of non-flow background

Pre-defined criteria: $(\Delta \gamma/v_2)_{Ru+Ru} > (\Delta \gamma/v_2)_{Zr+Zr}$

105 (2022) 014901

Isobar results consistent with the estimate of non-flow background within uncertainties

Energy loss of charm quarks in heavy-ion collisions

$$R_{AA} = \frac{1}{N_{coll}} \frac{d^2 N_{AA}/(dp_T dy)}{d^2 N_{pp}/(dp_T dy)}$$

Strong suppression of D⁰ and D^{+/-} at high p_T \rightarrow strong interaction of charm quarks with the medium

Also:

Enhanced Λ_c/D^0 and D_s/D^0 ratios in Au+Au compared PYTHIA pp results

Energy loss of bottom quarks in heavy-ion collisions

Heavy-flavor hadron decayed electrons: $c \rightarrow e$ and $b \rightarrow e$ separation thanks to Heavy Flavor Tracker.

Energy loss of bottom quarks in heavy-ion collisions

Heavy-flavor hadron decayed electrons: $c \rightarrow e$ and $b \rightarrow e$ separation thanks to Heavy Flavor Tracker.

Clear indication that b quarks lose less energy than c quarks.

Energy loss of bottom quarks in heavy-ion collisions

Heavy-flavor hadron decayed electrons: $c \rightarrow e$ and $b \rightarrow e$ separation thanks to

Heavy Flavor Tracker.

Clear indication that b quarks lose less energy than c quarks.

STAR, arXiv: 2111.14615

D⁰-meson tagged jets

D⁰-jet radial profile → charm quark diffusion in the QGP

BES-II program

- iTPC (2019+)
 - Extended n acceptance and improved tracking and dE/dx resolution
- eTOF (2019+)
 - Extended PID coverage
- **EPD (2018+)**
 - Independent EP reconstruction

Global hyperon polarization

Vorticity of the medium and magnetic field

Fluid vorticity $\rightarrow \Lambda$, anti- Λ in same direction

$$\omega = k_B T (P_{\Lambda} + P_{\bar{\Lambda}})/\hbar$$

Magnetic field $\rightarrow \Lambda$, anti- Λ in opposite direction

$$\mathbf{B} = \frac{\mathbf{T}}{2\mu_{\Lambda}} (\mathbf{P}_{\Lambda} - \mathbf{P}_{\bar{\Lambda}})$$

Global hyperon polarization P_H

Vorticity of the medium and magnetic field

Fluid vorticity $\rightarrow \Lambda$, anti- Λ in same direction

$$\omega = k_B T (P_{\Lambda} + P_{\bar{\Lambda}})/\hbar$$

Magnetic field $\rightarrow \Lambda$, anti- Λ in opposite direction

$$B = \frac{T}{2\mu_{\Lambda}} (P_{\Lambda} - P_{\bar{\Lambda}})$$

BES-II results extend the reach to $\sqrt{s_{NN}} = 3$ GeV, P_H increases with decreasing energy Results from STAR BES-II: $\sqrt{s_{NN}} = 3$, 7.2, 19.6, 27, 54.4 GeV

BES-II: Elliptic flow of light nuclei

Test of thermal production vs finalstate coalescence of nucleons

Results consistent with the mass number scaling within 20-30%

Other BES-II results with improved precision: particle spectra, elliptic flow of strange hadrons, K^{*0} production, (anti-)light hypernuclei ... and more to come soon

The BRAHMS experiment

Designed to measure charged hadrons over a wide range of rapidity and transverse momentum

Major motivation: characterizing the baryon stopping in p+p and Au+Au

BRAHMS results courtesy of Flemming Videbaek

Baryon stopping in p+p and Au+Au at RHIC

p+p collision at lower energies exhibits a feature: dN/dx~const

This implies that for constant $< m_T > vs.$ rapidity $\rightarrow dN/dy \sim exp(-y)$

Data confirm this behavior up to 200 GeV

Baryon stopping at RHIC: data vs models

- p+p proton data compared to PYTHIA8 (full drawn curve) and EPOS 1.99 (dashed curve)
- Net-protons are better described by EPOS
- Many other models predict net-p distributions like PYTHIA, not in agreement with data

Evaluation of baryon stopping

The rapidity loss can be evaluated by varying extrapolation to beam rapidity and calculate the y_b -<y>

$$\langle \delta_y \rangle = y_b - \frac{\int y dN/dy}{\int dN/dy}$$

Clear dependence on shape and thus rapidity loss with centrality.

Predictions by EPOS qualitatively describe the data

Evaluation of baryon stopping

The rapidity loss can be evaluated by varying extrapolation to beam rapidity and calculate the y_b -<y>

$$\langle \delta_y \rangle = y_b - \frac{\int y dN/dy}{\int dN/dy}$$

Rapidity loss estimated to be in the range 2.0-2.4 at 200 GeV

Summary and outlook

- RHIC is a versatile machine and facilitates broad physics program
 - Study of properties of the hot and cold nuclear matter
 - Mapping the QCD phase diagram in BES/BES-II
 - Study of origin of the nucleon spin in collisions of polarized protons
- Recently completed forward upgrades
 - Forward Tracking System and Forward Colorimeter System

- Rich heavy-ion physics program at RHIC and many interesting results to come
 - BES-II data
 - More cold and hot QCD studies with high-statistics 200 GeV p+p, p+Au and Au+Au
 data to be collected in 2023-2025

Backup

Global hyperon polarization P_H

Au+Au, Ru+Ru vs Zr+Zr at 200 GeV \rightarrow system size and magnetic field driven effects

Increasing P_H with centrality, no collision system dependence No B-field driven splitting between P_Λ and $P_{anti-\Lambda}$ observed D. Kikoła, EuNPC 2022

24