

HIGHLIGHTS FROM THE PHENIX EXPERIMENT

MÁTÉ CSANÁD (FOR THE PHENIX COLLABORATION) EÖTVÖS U, BUDAPEST EUROPEAN NUCLEAR PHYSICS CONFERENCE 2022, SANTIAGO DE COMPOSTELA

2/18 THE PHENIX EXPERIMENT

- PHENIX: versatile detector identifying many different particles, recording large amount of collisions
- Dismantled in 2016, to give way to sPHENIX
- sPHENIX: to take data soon
 - Jets, jet correlations, Upsilon states
 - EM+Hadronic calorimetry, high resolution tracking, fast (~100 kHz) data aquisition

3/18 THE PHENIX EXPERIMENT AND THE BES

- Detector system allowing hadron, photon, muon etc. measurements, data taking until 2016
- Collision energies: 7.7 to 200 GeV (20-400 MeV in μ_B , 140-170 MeV in T)
- This talk: summary of small and large systems

$\sqrt{S_{NN}}$ [GeV]		Al	Au	Au	Au	CuCu	CAU	Au	UU
510	V								
200	V	△	✓	V	V	V	V	✓	V
130								V	
62.4	V			V		V		V	
39				V				V	
27								V	
20				V		V		V	
14.5								V	
7.7								V	

4/18 ORIGIN OF FINAL STATE COLLECTIVITY?

- Is it due to the appearance of the sQGP (i.e., a strongly coupled fluid)?
 - If yes, how much time is needed to spend in QGP phase?
 - Test: d+Au collisions from 20 to 200 GeV
- Is it due to initial geometry and hydro?
 - Hydrodynamics: initial spatial correlations
 - Alternative: initial momentum correlations
 - Test: p+Au, d+Au, ³He+Au
 - How do v_2 and v_3 evolve with initial state geometry?

5/18 EVIDENCE FOR QGP DROPLETS IN SMALL SYSTEMS

- Data: apparent geometrical ordering
 - v_2 : p+Au < d+Au ~ 3 He+Au
 - v_3 : p+Au ~ d+Au < 3 He+Au
- Hydro calculations (2+1D, η/s = 0.08, MCGlauber, different hadronic rescattering) match data

6/18 INDEPENDENT STUDY OF ANISOTROPIES

- Using two particle correlations over large rapidity range
 - PHENIX Nat. Phys. 15, 214 (2019): uses Event Plane, BBCS, FVTXS, CNT
 - Check done with 3x2PC method, BBCS-FVTXS-CNT & FVTXS-CNT-FVTXN
 - Different systematics, different sensitivity to non flow effects, different result!
- 3x2PC measurement confirms geometrical ordering of v₂ and v₃
- More details in arXiv:2203.09894

7/18 NUCLEAR MODIFICATION AT INTERMEDIATE PT

- Measurement of $R_{xA} = \frac{dN_{xA}/dp_T \times \sigma_{pp}^{\text{inel}}}{\langle N_{\text{coll}} \rangle \times d\sigma_{pp}/dp_T}$ (where x: p, d, 3 He) in PRC105 (2022) 6, 064902
- Especially interesting: intermediate range of $2 < p_T < 6 \text{ GeV/c}$
 - "Cronin" peak indicating broadening
 - Shift of yield from scaled pp to scaled 3 He+Au starting around $dN_{ch}/d\eta$ of 4 to 5
- Broadening consistent with expectations for radial flow in small systems

8/18 CENTRALITY DEPENDENCE OF SUPPRESSION

- p+Al, p+Au, d+Au, ³He+Au compared, PRC105(2022)064902
- Centralities determined as for large systems
- Observations
 - New p+Au results show large centrality dependence
 - Systems of various size agree at high p_T
 - At moderate p_T, ordering seen
- Counterintuitive at high p_T:
 - 20% suppression in central collisions in all systems
 - 15% enhancement in peripheral collisions in all systems
 - Bias of centrality determination or final state effect?
- Model comparision:
 - Vitev, HIJING++ investigated
 - No full match of ordering, peak location, etc

9/18 DIRECT PHOTONS IN SMALL SYSTEMS

- High p_T direct γ at 8-18 GeV/c
 - · produced in hard scattering,
 - have no final state effects,
 - yield proportional to N_{coll}
- Direct γ to Π_0 ratio
 - No evident centrality dependence
- Centrality dependence of Π_0 : due to bias in centrality determination!

Niveditha Ram, Quark Matter 2022

10/18 REVISE R_{AA} VIA DIRECT PHOTONS

- Determine N_{coll} from experiment
 - Calculate dAu/pp ratio of direct y
 - Fit constant
- Compare to Glauber Model
 - Good agreement in central collisions within 5%
 - 15% deviation in peripheral collisions
- Bias in Glauber calculation, event activity reduced if hard scattering
- Experimental π₀ R_{dAu}
 - Consistent with unit for peripheral collisions within scale uncertainties
 - Clear suppression in central collisions, ~15% relative to peripheral collisions
- Evidence for final state suppression of Π_0 suppression at high p_T in d+Au events with high event activity
- Qualitatively consistent with energy loss?

PHENIX (b)

- Similar modification of J/ψ and $\psi(2S)$ in p-direction
- Stronger $\psi(2S)$ suppression in Au-direct.
- nPDF only can not describe the data
- Qualitatively agree with the transport model with final-state effects
- Qualitatively consistent with QGP formation
- Forward rapidity: J/ψ and $\psi(2S)$ suppression similar, initial-state effects dominate
- Backward rapidity: J/ ψ and ψ (2S) suppression different, increasing final-state effects in ion-going direction
- Details in Phys.Rev.C 105 (2022) 6, 064912 [arXiv:2202.03863]

PHENIX (a)

 $1.2 \le y \le 2.2$, Inclusive

-2.2 < y < -1.2, Inclusive

12/18 DIRECT PHOTONS IN SMALL AND LARGE SYSTEMS

- Clear direct γ signal at all investigated energies
- Yield scaling from RHIC to LHC, transition from p+p, to A+A: p+Au, d+Au "bridge the gap"
- Slope α larger than one and independent of p_T
- Effective photon temperature similar from 39 to 2760 GeV, depend on p_T range
 - Note overlapping mechanisms: hadron gas, sQGP, jets, bremsstrahlung, hard scattering

13/18 JET BROADENING FROM π_0 -h CORRELATIONS

- High statistics 200 GeV Au+Au data taken in 2014
- Jet-gamma correlations investigated
- I_{AA} = AA/pp away side yield ratio
- Modification of away-side jet particles
 - p_T > 3 GeV/c particles suppressed in jet core
 - I < p_T 3 GeV/c particles enhanced away from core
 - $p_T < I$ GeV/c particles enhanced at all angles $\Delta \phi$
- Evidence for broadening of jet
- Momentum transfer from core to low p_T
 - Over large Δφ

14/18 ENERGY LOSS OF HEAVY QUARKS IN Au+Au

- Unfolding technique to separate electrons
 from semi-leptonic heavy flavor bottom and charm decays
- Centrality dependent suppression of charm and bottom in Au+Au collision
 - Both charm and bottom are suppressed
 - More suppression in central collisions
 - Charm and bottom similar in peripheral collisions
 - Stronger suppression of charm in central collisions
- Agreement to STAR for MinBias collisions
- Similar mass ordering as expected from models with energy loss in QGP
 - Probably very small diffusion coefficient
- Details in arXiv:2203.17058

15/18 J/Ψ ELLIPTIC FLOW IN Au+Au

- J/ ψ R_{AA} measured in 200 GeV Au+Au for midrapidity and forward rapidity, published in 2011
- Measured J/ψ suppression
 - Observed at all rapidities
 - Larger at forward rapidity
- Possible explanation:
 - · Recombination at mid rapidity
- Expectation for recombination:
 Flow at midrapidity, but
 no flow in forward direction
- $J/\psi v_2$ at forward rapidity consistent with zero
 - Distinct difference from LHC

PHENIX PRC 84 (2011) 054912

Luis Bichon, Quark Matter 2022

16/18 LÉVY HBT MEASUREMENTS

- HBT measurements test source homogeneity lenght and shape
- Lévy assumption with stability index α
 - Generalization of Gaussian ($\alpha = 2$) or Cauchy ($\alpha = 1$) source
 - Possible reasons: anomalous diffusion, critical behavior, QCD jets, resonances, ...
- Tested from SPS through RHIC to LHC, also EPOS
- PHENIX measured Lévy α for pions and kaons
 - Pions: Phys. Rev. C97 (2018) 064911
 - Kaons: Preliminary at QM22
- Anomalous diffusion of hadrons suggests $\alpha(K) < \alpha(\pi)$
- Measurement does not confirm this so far
- Many other interesting details → see talk by T. Novák

17/18 SUMMARY

- Data consistent with QGP droplets in small systems with high event activity
 - Geometrical ordering of v_2 and v_3 as expected from hydro calculations, confirmed
 - Possible effect of radial flow seen in hadron spectra in small systems
 - Suppression of Π_0 yield at high p_T , direct photon correction for centrality bias
 - Charmonium $\psi(2S)$ suppressed as expected from final state effects
- Detailed study of QGP properties in large systems
 - Quantitative description remains challenging
 - Direct "thermal" radiation: p_T yield scaling, similar T_{eff} from RHIC to LHC
 - Jet broadening & redistribution of energy from jet core
 - Hints of different energy loss for charm and bottom quarks
 - Charmonium J/ ψ shows no flow at forward rapidity: recombination
- Numerous analysis ongoing and publications in preparation: thermal photons, heavy flavor, e^+e^-

THANK YOU FOR YOUR ATTENTION

IF YOU ARE INTERESTED IN THESE SUBJECTS:

http://zimanyischool.kfki.hu/22

BACKUP SLIDES