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[Pisarski, Wilczek, PRD 84]: 
               depends on  

restored                    broken 

The nature of the QCD thermal transition, The order of the p.t., arbitrary quark masses  

chiral p.t.
restoration of global symmetry in flavour space

µ = 0

deconfinement p.t.: 
breaking of global          symmetry  
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The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06
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Nf � 3 1st order

[Pelissetto, Vicari PRD 13]
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µB = 0



…is elusive, massless limit not simulable!

The nature of the QCD chiral transition 

Coarse lattices or unimproved actions: 1st order for 

1st order region shrinks rapidly as                             

Improved staggered actions: no 1st order region so far, even for    
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a ! 0

?

Details and reference list:   [O.P., Symmetry 13, 2021]
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mPS > 45MeV



From the physical point towards the chiral limit
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Cannot distinguish between Z(2) vs. O(4) exponents, need exponential accuracy!            
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Figure 3. Left: Pseudo-critical temperature of the crossover defined by the chiral
susceptibility ‰, the inflection point of the chiral condensate D or an additively
renormalised chiral condensate D3, for Nf “ 2 ` 1 ` 1 twisted mass Wilson fermions
close to the continuum. Lines represent chiral extrapolations according to the Op4q
second-order or finite critical Zp2q-mass scenario. From [30]. Right: Columbia plot
expressed in ÷, fi-masses in units of the Wilson flow parameter t0. Critical points
have been determined using an Opaq-improved Wilson action. The first-order region
includes the physical point on coarse lattices, but shrinks drastically as N· is increased.
From [31].

employing either Op4q exponents or Zp2q-exponents and a critical pseudo-scalar mass up
to mfi „ 100 MeV. Again, it is not possible to distunghuish between these scenarios. As
in the previous case, the extrapolated value of the critical temperature in the chiral limit
is therefore robust under changes of the critical exponents and quoted as

T 0
c “ 134`6

´4 MeV, (5)

in remarkable agreement with the staggered result.129

Fig. 3 (right) shows an investigation of sections of the chiral critical line using Opaq130

clover-improved Wilson fermions [31]. Starting point are the data for Nf “ 3 to be131

discussed separately below, and on N· “ 6 further points at larger strange quark masses132

have been added. The critical line is then fitted assuming a tricritical strange quark mass133

as explained in Section 2.5 plus polynomial corrections. Note that this discretisation134

features a much wider first-order region, which even contains the physical point on the135

coarser lattices. This must be a lattice artefact, and the first-order region rapidly shrinks136

as N· is increased.137

Several conclusions can be drawn from these results. Firstly, the width of a potential138

first-order region as in Fig. 1 (left) is bounded to a small fraction of the physical light quark139

(or pion) masses. Second, the numerical proximity of the critical exponent combinations140

1{p—”q for the 3D Op2q, Op4q and Zp2q universality classes appears to allow for a robust141

extrapolation of the chiral transition temperature to the massless limit with remarkably142

small uncertainties. Conversely this statement implies, however, that it is impossible143

to firmly identify the universality class in this way, which would require exponentially144

accurate data. This problem might be avoided by looking at the scaling of energy-like145

variables, which are governed by the critical exponent – that changes sign between the146

Op2q, Op4q and the Zp2q universality classes. It was shown that the Polyakov loop behaves147

as an energy-like observable, but unfortunately a firm distinction betweeen universality148

classes would require a further substantial reduction of the light quark mass [32]. Finally,149

note that the value of Tcpml “ 0q is „ 25 MeV lower than the pseudo-critical temperature150
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Figure 3. Left panel: Comparison of our fRG results for the pseudocritical temperature as a function of the pion mass to
those from the HotQCD collaboration [29]. The various dashed lines represent fits to the numerical data, see main text for
details. The estimates for the critical temperature Tc have been obtained from an extrapolation of the fits to m⇡ ! 0. The
temperatures T (l,s)

60 and T lattice
c are the extrapolated results for the chiral critical temperature obtained from a definition of

the pseudocritical temperature which does not involve the peak position of the susceptibility, see main text for details. Right
panel: Susceptibility as obtained from the reduced condensate as a function of the temperature. The normalisation �̄(l,s)

M is the
maximum of the susceptibility at the physical pion mass, see Eq. (5). The lattice QCD data has been taken from Refs. [29, 62].

pseudocritical temperature on the pion mass. For the
physical pion mass, m⇡ = 140 MeV, this ratio in our
present first-principles fRG study is about a factor of
three smaller than typical values for D(l) found in low-
energy QCD model studies [35, 36]. For example,

DQM
(l) (m⇡ =140 MeV) ⇡ 0.28 (9)

was reported in Ref. [36] for the quark-meson (QM)
model. In our present QCD study, we instead find

DQCD
(l) (m⇡ =140 MeV) ⇡ 0.10 , (10)

where we have employed the value for Tc obtained from

an extrapolation of the pseudocritical temperature T (l)
pc

to the limit m⇡ = 0.
Next, we turn to the reduced susceptibility �(l,s)

M as
defined in Eq. (4). In Fig. 2 (right panel), we show
a comparison of the light-quark susceptibility and the
reduced susceptibility for three pion masses. As ex-
pected, the qualitative behaviour of the reduced suscep-
tibility is the same as the one found for the light-quark
susceptibility. More specifically, the susceptibilities in-
crease for decreasing pion mass, indicating the approach
to a singularity in the chiral limit. Fitting the rela-

tion (7) to our numerical results for T (l,s)
pc (m⇡) for m⇡ =

30, 35, 40, . . . , 140 MeV, we obtain Tc ⇡ 141.6+0.3
�0.3 MeV,

c(l,s) ⇡ 0.17+0.03
�0.03 MeV1�p, and p ⇡ 0.91+0.03

�0.03. Thus, the
critical temperature Tc is in excellent agreement with the
one extracted from our analysis of the light-quark suscep-
tibilities, as it should be. With respect to the exponent p,
we note that it also deviates clearly from the expected

O(4) value. However, we observe that it is consistent
within fit errors with the value for p which we obtained
from our analysis of the light-quark susceptibility. Over-
all, we therefore cautiously conclude that QCD is not
within the scaling regime for the range of pion masses
considered here, providing us with m⇡ ⇡ 30 MeV as a
conservative estimate for the upper bound of this regime.
An actual determination of the size of the scaling regime
is beyond the scope of present work as it requires to study
very small pion masses.

In analogy to the definition (8), we can also define
the relative dependence D(l,s)(m⇡) of the pseudocritical
temperature on the pion mass in case of the reduced sus-
ceptibility. For m⇡ = 140MeV, we then find that this
quantity is only slightly smaller than the corresponding
quantity associated with the light-quark susceptibility.

In Fig. 3 (right panel), we finally compare our fRG
results for the reduced susceptibility to very recent re-
sults from the HotQCD collaboration [29]. We observe
excellent agreement between the results from the two ap-
proaches for pion masses m⇡ & 100 MeV. The deviations
of the results from the two approaches for smaller pion
masses may at least partially be attributed to cuto↵ arte-
facts in the lattice data. Note that cuto↵ e↵ects are ex-
pected to shift the maxima to smaller temperatures. We
refer to Ref. [18] for a respective discussion.

It is also worthwhile to compare the peak positions
of the reduced susceptibilities extracted from the lattice
QCD data with those from our fRG study, see Tab. I
and Fig. 3 (left panel). As discussed above, the peak
position can be used to define a pseudocritical tem-
perature. For the presently available pion masses on
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The nature of the QCD chiral transition, Nf=3

…has enormously large cut-off effects!

⇠ a2

O(a)-improved Wilson:
1st order region shrinks for             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O(a) improved Wilson  [Kuramashi et al. PRD 20]  
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mc
⇡  110 MeV N⌧ = 4, 6, 8, 10, 12



Resolution: scaling in lattice parameter space

Tricritical scaling observed in lattice bare parameter space

Allows extrapolation to lattice chiral limit, tricritical points 

If tricritical point exists: region of 1st-order transitions not connected to continuum

QCD chiral transition is second order for                                                                                                                                        
  
                                                            

crossover

1st

[Cuteri, O.P., Sciarra JHEP 21]

<latexit sha1_base64="i7PQcwW5LP8OPC8PsmGKkiJuyGo=">AAACAnicbVBNS8NAEN34WetX1JN4CRahXkoiRT0WvXgqFewHNDVstpt26WYTdidCCcWLf8WLB0W8+iu8+W/ctDlo64OBx3szzMzzY84U2Pa3sbS8srq2Xtgobm5t7+yae/stFSWS0CaJeCQ7PlaUM0GbwIDTTiwpDn1O2/7oOvPbD1QqFok7GMe0F+KBYAEjGLTkmYd1zwWc3LshhqEMU5CMTMp1Lzj1zJJdsaewFomTkxLK0fDML7cfkSSkAgjHSnUdO4ZeiiUwwumk6CaKxpiM8IB2NRU4pKqXTl+YWCda6VtBJHUJsKbq74kUh0qNQ193ZpeqeS8T//O6CQSXvZSJOAEqyGxRkHALIivLw+ozSQnwsSaYSKZvtcgQS0xAp1bUITjzLy+S1lnFOa9Ub6ul2lUeRwEdoWNURg66QDV0gxqoiQh6RM/oFb0ZT8aL8W58zFqXjHzmAP2B8fkDOI+XUg==</latexit>

N tric
⌧ (Nf )

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

aT

pa
m

P
S
q4{

5

Nf “ 3 LO N⌧ P r8, 12s
NLO N⌧ P r6, 12s NLO N⌧ P r4, 8s

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

aT

pa
m

q2{
5

Nf “ 3 Nf “ 4 Nf “ 5
Nf “ 6 Nf “ 7 Nf “ 8

  [Kuramashi et al. PRD 20]  

O(a) improved Wilson rescaled Staggered 
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Nf = 2� 7

crossover

1st

continuum limit



The Columbia plot in the continuum
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T 0
c = 135(8)MeV
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Tpc = 156(3)MeV

HotQCD PRD 21

Universality class(es)?



Lattice results for fluctuations + resummations
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B

2 , (b) �B

4 /�
B

2 , (c) �B

6 /�
B

2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities

The baryon number susceptibilities �B

k
= @k�1(⇢B/T 3)/@(µB/T )k�1 in the CEM read

�B

k
(T, µB) = � 2

27⇡2

b̂
2
1

b̂2

n
4⇡2
h
Li2�k (x+) + (�1)k Li2�k (x�)

i
+ 3
h
Li4�k (x+) + (�1)k Li4�k (x�)

io
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B

2 , �B

4 /�
B

2 , �B

6 /�
B

2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B

4 /�
B

2 .
The CEM is also consistent with the lattice data for �B

6 /�
B

2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B

2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].
Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B

2 cannot be considered as an unambiguous signal of chiral
criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities

All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters
– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B

4 /�
B

2 . The temperature
dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue
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Tracking the Lee-Yang edge (LYE) singularities in the complex     -plane μB
— a new method to detect the QCD critical point ?

Talks from Bielefeld-Parma Collaboration: K. Zambello,  S. Singh,       G.Nicotra 

Magnetic EoS

The universal scaling 
function exhibits a 
brunch cut, starting 
at              (LYE)z ≡ zLY

Three distinct 
scaling-regions:


• Roberge-Weiss 
(Z(2))


• Chiral (O(4)/O(2))


• Critical endpoint 
(Z(2))
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201 MeV < T < 145 MeV

• Robust identification of LYE from analytic continuation via 
multi-point Padé approximation of the net-baryon density


• Find Z(2) scaling close to the RW-transition and a candidate 
chiral LYE, preliminary results: 2101.02254


• Radius of convergence is limited by LYE

• Advantage: no regular part involved in the analysis, the 

determination of non-universal parameter thus more precise
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FIG. 6. Location of poles nearest to the origin obtained from the [4,4] Padé approximants in the complex µ̂B-plane. Only poles
with Re(µB) > 0 are shown. Shown are results the case µQ = µS = 0 (left) and the strangeness neutral, isospin symmetric
case (right).

FIG. 7. Magnitude of poles nearest to the origin obtained
from the [2,2] (squares and circles) and [4,4] (bands) Padé
approximants for Taylor expansions at µQ = µS = 0 and for
strangeness neutral, isospin symmetric media, respectively.
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Expressing the relation given in Eq. 28 in terms of the
cumulants �̄B,n

0 entering the Taylor series for the pres-
sure, Eq. 7, we have in the region of complex poles,
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The positions of the poles in the complex µ̂B-plane
are shown in Fig. 6. Only the two poles in the region
Re(µ̂B) � 0 are shown. With decreasing temperature the

poles move closer to the real axis as c8,2 approaches c+8,2,

i.e. ⇥c,4 = 0 for c8,2 = c+8,2. Furthermore, it is clear from
Eq. 29 that ⇥c,4 and rc,4 are correlated, which leads to
the orientation of the 1-� error ellipse in the complex µB,c

plane arising from the errors on c6,2 and c8,2, which are
assumed to given by independent Gaussian distributions
of the variables c6,2 and c8,2.

In Fig. 7 we show as symbols and bands, respectively,
the distance of poles of the [2,2] and [4,4] Padé approx-
imants from the origin as function of temperature. The
bands shown in Fig. 7 have been obtained by using the
spline interpolations of �̄B,6

0 and �̄B,8
0 on N⌧ = 8 lat-

tices and the continuum extrapolated results for �̄B,2
0 and

�̄B,4
0 , shown in Fig. 1, respectively. As can be seen the

two estimators yield a similar magnitude for rc,2 and rc,4.
Their location in the complex µB-plane, however, is quite
di↵erent. While the poles of the [2,2] Padé are always on
the real axis, the poles of the [4,4] Padé are in the complex
plane in the entire interval 135 MeV  T  165 MeV.

For 135 MeV  T  165 MeV we find that the poles
of the [4,4] Padé appear at a distance from the origin
corresponding to |µ̂B |>⇠2.5 at T ' 135 MeV and rises
to values larger than |µ̂B |>⇠3 for T>⇠Tpc. This also are
the best estimates for a temperature dependent bound
on the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator. The
information extracted from the [4,4] Padé approximants
on the location of poles in the analytic function represent-
ing the pressure as function of a complex valued chemical
potential µ̂B thus seems to be consistent with the good
convergence properties of the Taylor series itself.

Poles of the [4,4] Pade of the pressure ( ) 
from Taylor expansion at 

Δp /T4

μB = 0
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FIG. 6. Location of poles nearest to the origin obtained from the [4,4] Padé approximants in the complex µ̂B-plane. Only poles
with Re(µB) > 0 are shown. Shown are results the case µQ = µS = 0 (left) and the strangeness neutral, isospin symmetric
case (right).

FIG. 7. Magnitude of poles nearest to the origin obtained
from the [2,2] (squares and circles) and [4,4] (bands) Padé
approximants for Taylor expansions at µQ = µS = 0 and for
strangeness neutral, isospin symmetric media, respectively.
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Expressing the relation given in Eq. 28 in terms of the
cumulants �̄B,n

0 entering the Taylor series for the pres-
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The positions of the poles in the complex µ̂B-plane
are shown in Fig. 6. Only the two poles in the region
Re(µ̂B) � 0 are shown. With decreasing temperature the

poles move closer to the real axis as c8,2 approaches c+8,2,

i.e. ⇥c,4 = 0 for c8,2 = c+8,2. Furthermore, it is clear from
Eq. 29 that ⇥c,4 and rc,4 are correlated, which leads to
the orientation of the 1-� error ellipse in the complex µB,c

plane arising from the errors on c6,2 and c8,2, which are
assumed to given by independent Gaussian distributions
of the variables c6,2 and c8,2.

In Fig. 7 we show as symbols and bands, respectively,
the distance of poles of the [2,2] and [4,4] Padé approx-
imants from the origin as function of temperature. The
bands shown in Fig. 7 have been obtained by using the
spline interpolations of �̄B,6

0 and �̄B,8
0 on N⌧ = 8 lat-

tices and the continuum extrapolated results for �̄B,2
0 and

�̄B,4
0 , shown in Fig. 1, respectively. As can be seen the

two estimators yield a similar magnitude for rc,2 and rc,4.
Their location in the complex µB-plane, however, is quite
di↵erent. While the poles of the [2,2] Padé are always on
the real axis, the poles of the [4,4] Padé are in the complex
plane in the entire interval 135 MeV  T  165 MeV.

For 135 MeV  T  165 MeV we find that the poles
of the [4,4] Padé appear at a distance from the origin
corresponding to |µ̂B |>⇠2.5 at T ' 135 MeV and rises
to values larger than |µ̂B |>⇠3 for T>⇠Tpc. This also are
the best estimates for a temperature dependent bound
on the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator. The
information extracted from the [4,4] Padé approximants
on the location of poles in the analytic function represent-
ing the pressure as function of a complex valued chemical
potential µ̂B thus seems to be consistent with the good
convergence properties of the Taylor series itself.

• Resummation of Taylor series using (standard) Padé-
approximants

• Poles of the [n,4]-Pade are identical to the  
corresponding Mercer-Roberts approximation of the 
radius of convergence (if poles are complex)


• Find upper bound for QCD critical point: 

                  

• Currently observed temperature scaling of the 

position of poles does not resemble universal scaling 

- Order of approximation not sufficient?

- Far away from scaling region?


Also in that paper: 

• Update on the EoS at non-zero , well controlled 

series for pressure and number density for 
 and , respectively — consistent with 

Padé result.

Tc < 125 MeV, μB /T > 2.5

μB

μB /T ≤ 2.5 2
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.

search for radius of convergence 

Cluster expansion model, infinite order,
describes all available lattice data

 [Vovchenko et al. PRD 18] 
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Constraints on the critical point

‣ Ordering of critical temperatures  

‣ Cluster expansion model of lattice fluctuations 
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The “standard scenario’’:
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
1

b̂2

�
4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
�
Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)

[Bellwied et al, PLB 15]
[Bonati et al, NPA 19]
[Bonati et al, PRD 18]
[HotQCD, PLB 19]
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
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b̂2
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4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
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Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)

[Halasz et al., PRD 98; Hatta, Ikeda, PRD 03…]
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
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8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read
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k (T, µB) = � 2
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Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
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2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23) [O.P.  Symmetry 21] 
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B > 2.5T  [Wuppertal-Budpest collaboration, PRD 21] 
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B > ⇡T

[Fischer PPNP 19; Fu, Pawlowski, Rennecke PRD 20; Gao, Pawlowski PRD 21] 
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all known results on screening masses are fully consis-
tent with such an intermediate temperature range be-
tween broken chiral symmetry and a partonic quark gluon
plasma. Using quark hadron duality of screening masses
to identify the onset of the plasma regime, we derive how
the upper boundary of the chiral spin symmetric band
curves away from the T -axis in Sec. V. In Sec. VI we
identify parity doubled baryon matter as a candidate for
a chiral spin symmetric regime of cold and dense QCD,
which can be naturally embedded into quarkyonic mat-
ter. Finally, we discuss the prospects and limitations of
dilepton spectra to probe matter in the chiral spin sym-
metric regime, Sec. VII.

II. CHIRAL SPIN SYMMETRY OF THE COLOR
CHARGE AND ITS IMPLICATIONS

The Banks-Casher relation [18] connects the quark
condensate of the QCD vacuum with the density of the
near-zero modes of the Dirac operator,

h ̄ i = ⇡ lim
�!0

lim
m!0

lim
V!1

⇢(�,m) . (1)

An artificial truncation of the near-zero modes on the
lattice at T = 0 may then be expected to restore
the SU(NF )L ⇥ SU(NF )R and possibly the U(1)A chi-
ral symmetry of the QCD Lagrangian. For example,
the instanton liquid model [19, 20] suggests that both
SU(NF )L ⇥ SU(NF )R and U(1)A breakings are due to
the ’t Hooft determinant induced by the instanton fluc-
tuations of the QCD vacuum at sufficiently strong cou-
pling [21].

A spectrum calculation based on such truncated Dirac
operators has revealed a larger degeneracy pattern than
expected, both for mesons [22–24] and baryons [25].
From the quantum numbers of the degenerate states
the symmetry groups responsible for this large degen-
eracy, the chiral spin SU(2)CS and SU(2NF ), were re-
constructed in refs. [26, 27]. An SU(2)CS chiral spin
transformation acting on Dirac spinors can be defined as

 !  0 = exp

✓
i
"n⌃n

2

◆
 , (2)

where the generators ⌃n/2 of the four-dimensional re-
ducible representation are

⌃n = {�0,�i�5�0, �5} (3)

and satisfy the su(2) algebra. This transformation ro-
tates in the space of right- and left-handed Weyl spinors
R,L, and an equivalent representation of Eq. (2) is
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In Euclidean spacetime with its O(4) symmetry, all
four directions are equivalent and one can use any Eu-
clidean hermitian �-matrix �k, k = 1, 2, 3, 4 to replace

the Minkowskian �0,

⌃n = {�k,�i�5�k, �5}, (5)

�i�j + �j�i = 2�ij ; �5 = �1�2�3�4. (6)

The su(2) algebra is satisfied for any k = 1, 2, 3, 4, so
any choice is permitted that does not mix operators with
different spatial O(3) spins. Note that SU(2)CS contains
U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
try as a subgroup,

SU(2NF ) � SU(NF )L ⇥ SU(NF )R ⇥ U(1)A . (7)

The SU(2)CS and SU(2NF ) groups are not symme-
tries of the Dirac Lagrangian. In a fixed Lorentz frame
we can split the latter in color-electric (temporal) and
color-magnetic (spatial) parts,

 ̄�µDµ =  ̄�0D0 +  ̄�iDi , (8)

where the first term is invarant under SU(2)CS and
SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
charge

Qa =

Z
d3x  †(x)T a (x) , (9)

with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
crossover [28].

III. CHIRAL SPIN SYMMETRY AT FINITE
TEMPERATURE

Above the pseudocritical temperature for chiral sym-
metry restoration in NF = 2 + 1 QCD, Tpc ⇠ 155 MeV
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U(1)A as a subgroup. The direct product of the SU(2)CS

group with the flavor group SU(NF ) can be embedded
into a SU(2NF ) group, which includes the chiral symme-
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SU(2NF ), while the second term is not. At the same
time these are symmetries of the Lorentz-invariant color
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with T a the SU(3) color generators. This feature allows
for the SU(2)CS and SU(2NF ) symmetries to distin-
guish between the chromoelectric and chromomagnetic
interactions in a given reference frame. The chromoelec-
tric gauge field couples to the color charge, consequently
the chromoelectric interaction of quarks and gauge fields
is SU(2)CS and SU(2NF ) symmetric. The chromo-
magnetic gauge fields couple to a current, which is not
SU(2)CS and SU(2NF ) symmetric. Thus, the symmetry
of the electric part of the QCD Lagrangian is larger than
the symmetry of the QCD Lagrangian as a whole.

The observation of the SU(2)CS , SU(2NF ) symmetries
in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
any truncations, the chiral spin and SU(2NF ) symme-
tries should emerge above the chiral symmetry restoring
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [27, 28],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [22]. The SU(2)CS chiral spin transformations are defined by
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where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d
3
x  

†(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.

In Minkowski space in a given reference frame the quark-gluon interaction can be split into temporal and spatial
parts:
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The temporal term includes the interaction of the color-octet charge density
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 (x) (31)

with the chromo-electric component of the gluonic field. It is invariant under SU(2)CS [28]. We emphasize that the
SU(2)CS transformations defined in Eq. (26) via the Euclidean Dirac matrices can be identically applied to Minkowski
Dirac spinors without any modification of the generators. The spatial part contains the quark kinetic term and the
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magnetic gauge fields couple to a current, which is not
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of the electric part of the QCD Lagrangian is larger than
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in the hadron spectrum upon truncation of the near-zero
modes of the Dirac operator then implies that the mag-
netic interaction at zero temperature is located mostly in
those near-zero modes, whereas a confining electric inter-
action is distributed among all Dirac modes. Hence, con-
finement and chiral symmetry breaking in QCD are not
directly related phenomena. Based on this observation it
was predicted that, for finite temperature QCD without
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[⌃a, �0] = 0, [⌃a, �i] 6= 0,

Necessary condition for approximate CS symmetry: 

Quantum effective action  dynamically dominated by colour-electric interactions! 
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We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)
†
i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

V. RESULTS

In Fig. 1 we compare the spatial correlators for a wide range of temperatures from T ⇠ 220 MeV to 960 MeV to
give an impression of the changing behavior observed for di↵erent values of T . The correlators are shown as a function
of the dimensionless combination zT = nz/Nt (compare Eq. (41)) using the full range of nz values – up to periodicity.
In order to compare di↵erent correlators without a proper renormalization, our correlators are normalized to 1 at
nz = 1. Because of the degeneracy of x and y components in vector operators we show only the correlators for the x

components.
The top left panel of Fig. 1 shows correlators at a temperature of T ⇠ 220 MeV, i.e., 1.2Tc. All correlation

functions of chiral partners are degenerate within errors. In detail, this are the two pairs (Vx, Ax) and (Vt, At), each
of which reflects SU(2)R ⇥ SU(2)L symmetry. U(1)A symmetry in the vector channel, represented by the operator
pairs (Tx, Xx) and (Tt, Xt), is manifest for all ensembles. For the scalar (PS, S) pair we find the restoration of U(1)A
symmetry to be heavily dependent on the parameters. As it is evident from the top left panel of Fig. 1, PS and S are
degenerate within errors for our finest lattice. On the coarser 32⇥ 8 ensemble at 220 MeV we find a visible di↵erence
of PS and S correlators consistent with previous findings in literature, e.g. the data for staggered quarks presented
in Fig. 7 of Ref. [19].3

For temperatures between T ⇠ 220 – 500 MeV the correlators are grouped into three distinct multiplets4:

E1 : PS $ S , (43)

E2 : Vx $ Tt $ Xt $ Ax , (44)

E3 : Vt $ Tx $ Xx $ At . (45)

Possible splittings within each of these multiplets are obviously much smaller than the distances between the multiplets.
The multiplet structure reflects the symmetries as follows: The multiplet E1 indicates the restoration of U(1)A
symmetry. Degeneracies within the multiplets E2 and E3 reflect the larger symmetries SU(2)CS and SU(4) as
discussed in the previous section.

The formation of the multiplet E3 is not necessarily a consequence of the SU(2)CS and SU(4) symmetries as
the same degeneracy of correlators is seen also for non-interacting quarks (15) and can be attributed to current
conservation. Consequently from the observation of the E3 multiplet alone we could not claim the emergence of the
SU(2)CS and SU(4) symmetries. However, the E2 degeneracy is not manifest in the free quark system (15) and
indeed can be attributed to the emergent SU(2)CS and SU(4) symmetries.
We speak of separate multiplets when the splittings within the multiplets are much smaller than splittings between

di↵erent multiplets. All correlators connected by chiral U(1)A and SU(2)L ⇥ SU(2)R transformations are indistin-
guishable at all temperatures. At temperatures above T ⇠ 600 MeV we observe that the distinct multiplet E2, related
to emergence of the SU(2)CS and SU(4) symmetries, is washed out. The remaining E3 multiplet structure can be
attributed to quasi-free quarks.
In Fig. 2 we now focus on the E1 and E2 multiplets at three di↵erent temperatures. For comparison we also show

the corresponding correlators computed for free quarks (dashed lines). The latter correlators are obtained with the
same lattice Dirac operator and lattice size as used for the full QCD but now with a unit gauge configuration. We
note that for free quarks only those degeneracies exist that are predicted by the chiral U(1)A and SU(2)L ⇥ SU(2)R
symmetries.
For the lowest temperature T ⇠ 220 MeV we still observe a small residual splitting within the E2 multiplet, while

at T ⇠ 380 MeV the di↵erence nearly vanishes. Furthermore, there is a clear splitting between the E1 and E2

multiplets indicating SU(2)CS and SU(4) symmetries. In addition all correlators are well separated from their free
quark counterparts shown as dashed curves.

3 For detailed studies of U(1)A symmetry around Tc see e.g. [21] or [24]. The latter study uses the same simulation setup as the present
work.

4 Note that in E2 and E3 we leave out the y components which are exactly degenerate with the respective x components explicitly listed
in E2 and E3.
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SU(2)L ⇥ SU(2)R ⇥ U(1)A

Spatial correlators:

 JLQCD domain wall fermions at phys. point 

[Rohrhofer et al., Phys. Rev. D100 (2019]
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FIG. 2. Temporal correlation functions for 483⇥12 lattices. The l.h.s. shows correlators calculated

with free noninteracting quarks on the same lattice, and features a symmetry pattern expected from

chiral symmetry. The r.h.s. presents full QCD data at a temperature of T = 220MeV (1.2Tc),

which shows multiplets of all U(1)A, SU(2)L ⇥ SU(2)R, SU(2)CS and SU(4) groups.

On the left side of Fig. 2 we show the correlators calculated with free, noninteracting

quarks on the same lattice with the same Dirac action (the gauge operator U is set to 1).

Dynamics of free quarks are governed by the Dirac equation and only chiral symmetries

exist. Indeed, a multiplet structure in this case is very di↵erent as compared to the right

side of Fig. 2 and only degeneracies due to U(1)A and SU(2)L ⇥ SU(2)R symmetries are

seen in meson correlators calculated for free quarks. The pattern seen on the left of Fig. 2

reflects correlators at a very high temperature, since due to the asymptotic freedom at very

high T the quark-gluon interactions can be neglected.

While we observe practically exact chiral symmetries, the SU(2)CS and SU(4) symme-

tries are only approximate. A degree of the symmetry breaking can be evaluated via the

parameter ,

 =
C

(1,0)�(0,1)
⇢ � C

(1/2,1/2)
⇢

C
(1,0)�(0,1)
⇢ � CS

, (11)

that measures the splitting within the SU(2)CS multiplet relative to the distance between

di↵erent multiplets. With this definition, good symmetry implies || ⌧ 1.

The degree of the symmetry breaking obviously depends on the dimensionless variable

tT . At tT ⇠ 0.5 the breaking is tiny, as can be seen from Fig. 3. For the noninteracting

quarks there is no SU(2)CS symmetry and in infinite volume || ⇠ 1 [13].
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Temporal correlators:

[Rohrhofer et al., PLB 20]
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FIG. 1. Transformations between interpolating vector operators, i = 1, 2, 3. The left columns

indicate the chiral representation for each operator. Red and blue arrows connect operators that

transform into each other under SU(2)L ⇥SU(2)R and U(1)A, respectively. Green arrows connect

operators that form triplets of SU(2)CS , k = 4. The f1 and a1 operators are the SU(2)CS , k = 4 –

singlets. Purple arrows show the 15-plet of SU(4). The f1 operator is a SU(4)-singlet.

Transformation properties of the local J = 1 quark-antiquark bilinears O�(x, y, z, t) with

respect to SU(2)L ⇥ SU(2)R and U(1)A are given on the left side of Fig. 1 and those with

respect to SU(2)CS, k = 4 and SU(4) on the right side of Fig. 1 [6]. Emergence of the

respective symmetries is signalled by the degeneracy of the correlators (9) calculated with

operators that are connected by the corresponding transformations.

III. METHODOLOGY

The lattice data presented in the next section is calculated on JLQCD gauge configura-

tions with NF = 2 fully dynamical domain wall fermions ([9, 16]). The length of the fifth

dimension for the fermions is chosen as L5 = 16, to ensure good chiral symmetry [14].

The quark propagators are computed on point sources after three steps of stout smearing.

The fermion fields obey anti-periodic boundary conditions in time direction. For the gauge

part we use the Symanzik-improved gauge action with an inverse gauge coupling �g =

4.3 (a = 0.075 fm). The time extent of the lattices is Nt = 12, which corresponds to a

temperature of T ' 220 MeV (⇠ 1.2Tc). We calculate the data on three spatial volumes,

Ns = 24, 32, 48, with a quark mass of mud = 0.001. Measurements are performed on O(50)

independent configurations.
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The pion spectral function
[Lowdon, O.P.,  arXiv:2207.14718 ]
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⇡,⇡⇤2-state fits
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Dm,�

spectral functions predict temporal correlators, compare with data 

Rohrhofer et al., Phys. Rev. D100 (2019)

Rohrhofer et al., Phys. Lett. B802 (2020)
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CS  symmetry at finite density
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Cold and dense candidate:  baryon parity doublet models, CS symmetric  
[Glozman, Catillo PRD 18] 

Quarkyonic matter [McLerran, Pisarski, NPA 07;  O.P., Scheunert JHEP 19]  
 
-contains chirally symmetric baryon matter 
-consistent with intermediate CS regime

CS consistent with or without chiral phase transition  

…

CS

13

[Glozman, O.P., Pisarski, arXiv:2204.05083]  



Conclusions

Chiral transition is at zero density is second order for Nf=2-7   

Phenomenologically relevant constraints on critical point emerging 

Three regimes of QCD: chirally broken, chiral spin symmetric, chiral symmetric

Intermediate temperature regime  
with CS symmetry and hadron-like states 
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Tpc < T < 3Tpc


