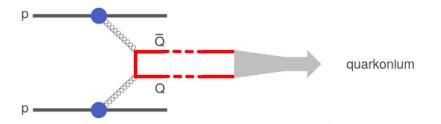
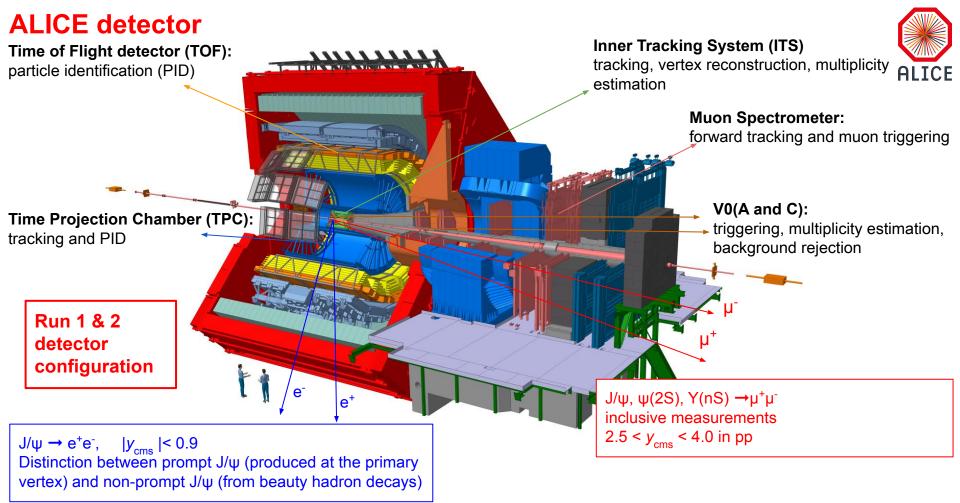
Quarkonium production and elliptic flow in small systems with ALICE

Giacomo Alocco
On behalf of the ALICE collaboration

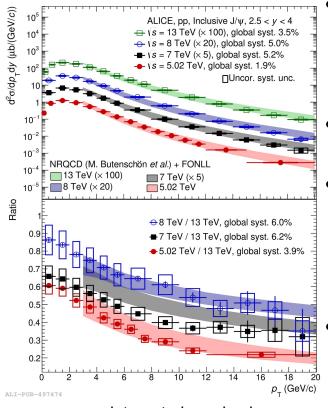
University & INFN Cagliari EuNPC22, Santiago de Compostela 26/10/22




Physics motivation for quarkonium studies in pp collisions

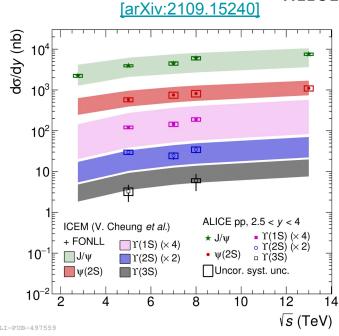
- » ALTCE
- Quarkonium production measurements in pp provide constraints to theoretical models (e.g. Color evaporation, ALICE NRQCD, ...). Different QCD scales involved:
 - Hard-scales: heavy-quark pair production in the initial hard scattering described by pQCD
 - Soft-scales: binding of quark pairs into a colorless final state probe non-perturbative physics

- High-multiplicity events to probe collectivity:
 - Elliptic flow of charged particles and strange hadrons production showed similarities in small systems (high-multiplicity pp, p–Pb) and Pb–Pb collisions [ALICE, PLB 719 29 (2013)] [ALICE, Nature Phys 13, 535–539 (2017)]
 - Multiple parton-parton interactions (MPI) taking place in a single hadron-hadron collision are one of the main explanations for these observations → double quarkonium production and quarkonium vs multiplicity in small systems offer a way to probe MPI
- Investigate beauty production via non-prompt charmonium measurements
- Reference systems to study heavy-ion collisions and the quark-gluon plasma effects


Giacomo Alocco - EuNPC22 2

Giacomo Alocco - EuNPC22 3

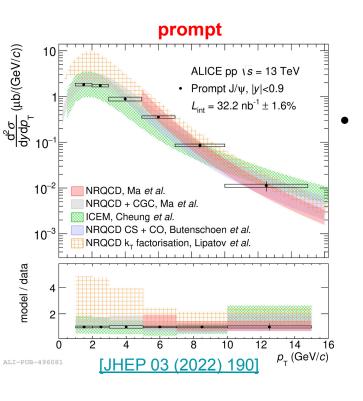
Quarkonium production at forward rapidity

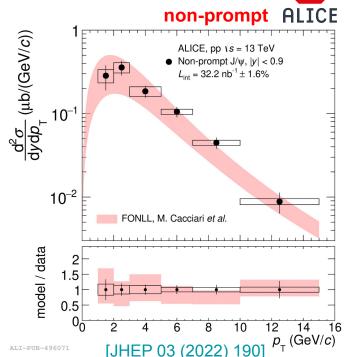

New measurements in pp collisions at \sqrt{s} = 5.02 and 13 TeV:

 \sqrt{s} = 5.02 TeV → 10 times more statistics w.r.t. the previous measurement

Hardening of the p_{T} -spectra at 13 TeV compared to lower \sqrt{s}

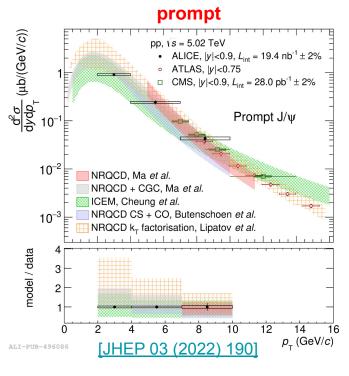
Cross sections are reproduced within uncertainties by both NRQCD [arXiv:1009.5662] [arXiv:1205.6344] and ICEM [arXiv:1808.02909] calculations at all energies


Difficulties to reproduce all the cross section ratios among energies, but are still compatible within the experimental precision


• p_T -integrated quarkonium cross sections at different energy well **reproduced by ICEM calculations for different species**

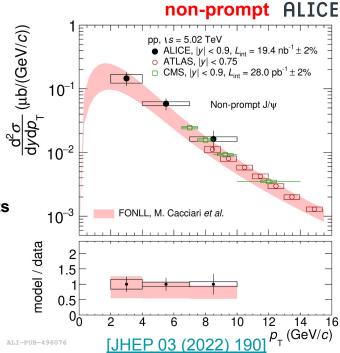
Quarkonium production at midrapidity

Models describe well both prompt (NRQCD [arXiv:1009.3655][arXiv:1906.0 7182][arXiv:1408.4075], ICEM) and non-prompt (FONLL [hep-ph/9803400]) J/ψ p_T -differential cross sections at midrapidity, at



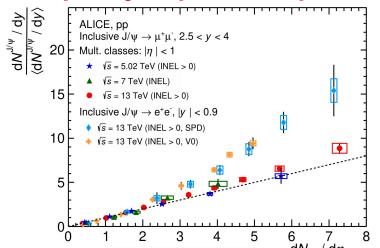
- Fraction of non-prompt J/ψ:
 - o f_B^{visible} (\sqrt{s} =13 TeV,|y| < 0.9, p_T > 1 GeV/c) = 0.185 ± 0.015 (stat.) ± 0.014 (syst.)

√s=13 TeV


Quarkonium production at midrapidity

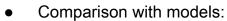
Similar conclusion for data-model comparison at √s=5.02 TeV

Good agreement with the corresponding measurements from ATLAS and CMS in the overlapping *p*_⊤ range

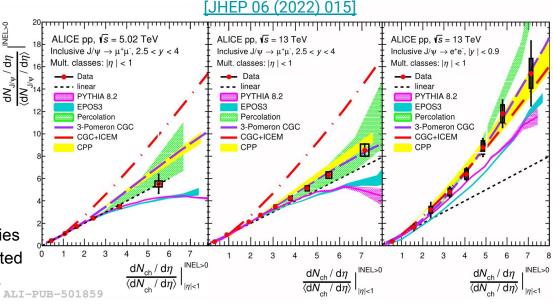


Fraction of non-prompt J/ψ:

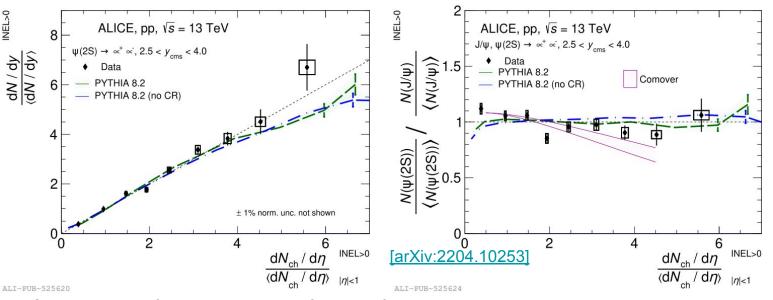
o f_B^{visible} ($\sqrt{\dot{s}}$ =5.02 TeV,|y| < 0.9, p_T > 2 GeV/c) = 0.157 ± 0.023 (stat.) ± 0.016 (syst.) Indication of a decrease of the f_B^{visible} at lower collision energies


Multiplicity dependent quarkonium production: J/ψ

ALICE

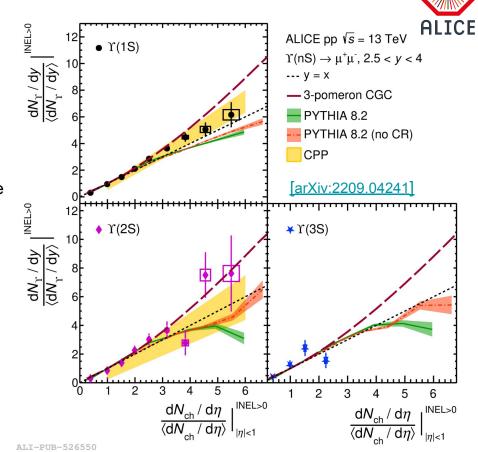

[JHEP 06 (2022) 015]

- Production measurement vs charged particle multiplicity:
 - Midrapidity region: stronger than linear increase
 - Forward rapidity region: trend compatible with a linear dependence on multiplicity, regardless of the collision energy


ALI-PUB-501851

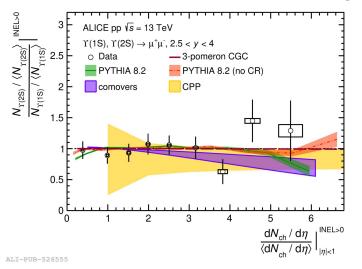
- CPP [arXiv:1910.09682] and 3-Pomeron
 CGC [arXiv:1910.13579] models in agreement with the data within uncertainties
- Faster-than-linear increase at midrapidity predicted by different models due to different mechanisms

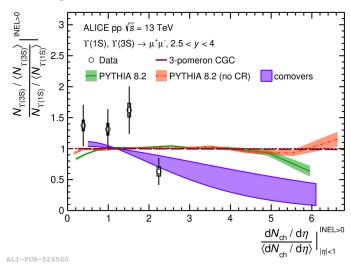
Multiplicity dependent quarkonium production: $\psi(2S)$



- $\psi(2S)$ production at forward rapidity as a function of midrapidity multiplicity exhibits a linear dependence
- Self-normalized ψ(2S)-to-J/ψ ratio vs multiplicity compatible with unity:
 - Forward production is independent of the charmonium state
- PYTHIA(with/without color reconnections) [arXiv:1410.3012] in good agreement with data:
 - ψ(2S) yield: tension at high multiplicity
 - \circ $\psi(2S)$ -to-J/ ψ ratio: tension at low multiplicity
- Comovers [arXiv:1411.0549]: predict suppression of the ψ(2S) w.r.t. J/ψ at high multiplicity

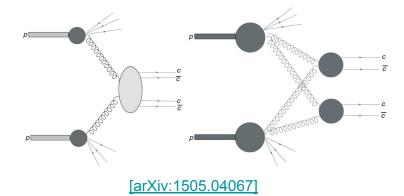
Multiplicity dependent quarkonium production: Y(nS)

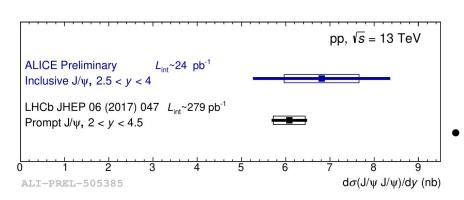

- The Y(nS) production yields as a function of charged particle multiplicity, both self-normalized, show a linear trend with a slope compatible with unity
- This behavior is qualitatively reproduced up to 4 times the mean multiplicity by PYTHIA 8.2 with and without the color reconnection scenario, by CPP, and by the 3-pomeron CGC approach
- At high multiplicities, the theoretical computations but CPP diverge:
 - The 3-pomeron CGC tends to overestimate the observed trend
 - PYTHIA 8.2 underestimates the production



Multiplicity dependent quarkonium production: Y(nS)

[arXiv:2209.04241]

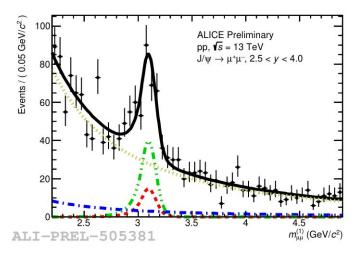




- Excited Y(nS) to ground state ratios as well are compatible with unity
- Agreement with the predictions of PYTHIA 8.2, CPP and 3-pomeron CGC
- The comovers model predict a suppression of the Y(2S) and Y(3S) w.r.t. the Y(1S) states at high-multiplicity:
 - The large uncertainties don't allow to confirm nor exclude any final state effects

Giacomo Alocco - EuNPC22

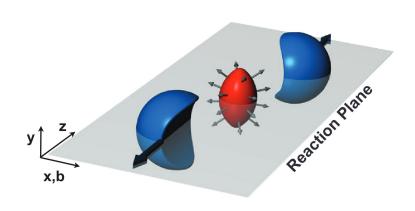
J/ψ pair production


Constrain long-distance matrix elements of NRQCD models

Different sensitivity to feed-down from excited states than single J/ψ production

Insights on double parton scattering and associated

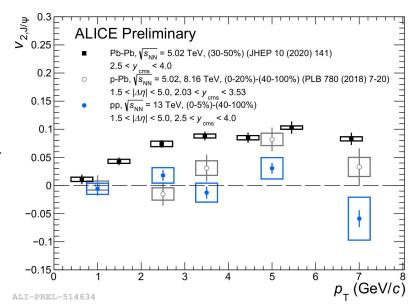
production

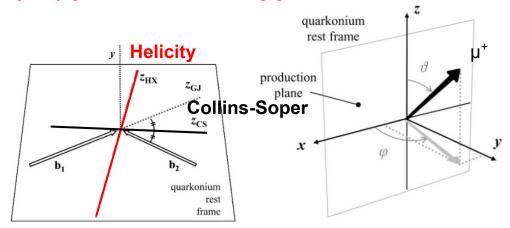


- Consistency with LHCb cross section measurement, with two caveats:
 - Prompt J/ψ measured in LHCb, inclusive J/ψ in ALICE
 - Slightly different rapidity ranges

Giacomo Alocco - EuNPC22

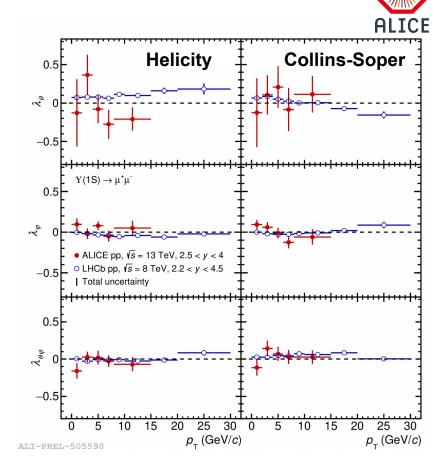
$J/\psi v_2$ in high multiplicity pp collisions




Collective effects for heavy flavors in small systems can be accessed by studying flow observables through 2-particle correlations → elliptic flow coefficient *v*₂

$$\frac{dN^{\text{pairs}}}{d\Delta\phi} \propto \left(1 + \sum_{n=1}^{\infty} 2v_n^2 cos(n\Delta\phi)\right)$$

- J/ ψ elliptic flow measurement vs p_{T} :
 - \circ First results in pp down to zero p_T
 - No significant deviation of v_2 from zero
 - \circ No collective behavior observed at high multiplicity for the J/ψ
- The J/ ψ elliptic flow increases with the system size: $v_2^{\text{J/}\psi}(\text{pp}) < v_2^{\text{J/}\psi}(\text{pPb}) < v_2^{\text{J/}\psi}(\text{PbPb})$


Y(1S) polarization in pp collisions

- Y(1S) has J^{PC} = 1⁻⁻ → it can be produced in three angular momentum states related to their polarization state
- The polarization can be extracted from the angular distribution of the Y(1S):

$$W(\cos\theta, \varphi | \overrightarrow{\lambda}) \propto \frac{1}{3 + \lambda_{\theta}} (1 + \lambda_{\theta} \cos^2\theta + \lambda_{\varphi} \sin^2\theta \cos2\varphi + \lambda_{\theta\varphi} \sin2\theta \cos\varphi)$$

 All polarization parameters are compatible with zero within uncertainties for both reference frames → no significant polarization observed

Conclusion and Outlook

- Quarkonium production in pp collisions:
 - Prompt J/ψ is well reproduced by NRQCD and ICEM, and non-prompt by FONLL
- Measurements of multiplicity dependent charmonium production in pp collisions:
 - Different behavior versus charged particle multiplicity for the J/ψ produced at mid and forward rapidity
 - \circ Same linear trend versus multiplicity for the J/ ψ , ψ (2S), and Y(nS) at forward rapidity
- First elliptic flow measurements for J/ψ in pp collisions at 13 TeV \rightarrow no significant elliptic flow
- Measurement of the **double J/ψ cross section**: results in agreement with LHCb
- First measurement of the **Y(1S)** polarization in pp collision at 13 TeV → no significant polarization

- Perspective for LHC Run 3:
 - Larger multiplicity can be achieved with increased statistics
 - Separation of the prompt and non-prompt charmonia at forward rapidity thanks to the new Muon Forward Tracker
 - Improved spatial resolution at midrapidity thanks to the upgraded ITS

Giacomo Alocco - EuNPC22