

Results on Hadronic Physics with the Pierre Auger Observatory

L. Cazon, for the Auger Collaboration

Main Results at a glance

- Top down scenarios (cosmological origin) disfavoured.
- UHECR extragalactin origin
- Sources are astrophysical
 - Starburst Galaxies, AGN...?
- Hard injection spectra
- Heavier composition
 - (compared to expectations)
- Hadronic Physics beyond LHC energies

The bulk of radiated and visible energy comes from the EM-cascade

n⁰ decays are the propellers of the EM cascade

EuNPC 2022, Santiago

Photon

2

X_{max}: Mass interpretation

p-Air cross section

 \Rightarrow Tail of X_{\max} -Distribution

$$\frac{dp}{dX_1} = \frac{1}{\lambda_{\text{int}}} e^{-X_1/\lambda_{\text{int}}} \Big|$$

	$10^{17.8} - 10^{18} \mathrm{eV}$	$10^{18} - 10^{18.5} \mathrm{eV}$			
$\sigma_{ m p-air}$ uncertainties					
Λ_{η} , systematic uncertainties (mb)	13.5	14.1			
Hadronic interaction models (mb)	10	10			
Energy scale uncertainty, $\Delta E/E = 14\%$ (mb)	2.1	1.3			
Conversion of Λ_{η} to σ_{p-air} (mb)	7	7			
Photons (mb)	4.7	4.2			
Helium, 25% (mb)	-17.2	-15.8			
Total systematic uncertainty on σ_{p-air} (mb)	+19/-25	+19/-25			

Possible He contamination is the main source of systematic uncertainty. 25% He maximum contamination assumed for sys. uncertainties

Muon Production Depth : $< X^{\mu}_{max} >$

Muon Production Depth profile can be estimated from the muon arrival times distributions

Muons are produced in the shower axis Muons travel following straight lines

Number of muons in Inclined Showers

62<*Θ*<80 deg

Example of $\rho_{u,19}$ for proton showers at θ =80°, ϕ =0° and core at (x,y) = (0,0)

Fit the muon density in stations

$$\rho_{\mu} = N_{19} \rho_{\mu,19}(x, y)$$

where N_{19} free parameter And $\rho_{\mu,19}$ (x,y) is fixed, corresponding to proton QGSJetII-03 at 10^{19} eV

Ratio of the total number of muons N_{μ} to $N_{\mu,19}$ (proton QGSJetII-03 at 10^{19} eV)

$$R_{\mu} = N_{\mu} / N_{\mu,19}$$

Correspondence (<5% bias correction)

$$N_{19} \Leftrightarrow R_{\mu}$$

Muon deficit in sims, and also deficit on energy derivative (muon gain)

Number of Muons and Energy Scale from Vertical Showers

- Find simulations which match FD profile,
 for each event
- Compare SD signals for simulations and data
- Rescale muon content until simulated SD best match data

TABLE I: Approximated amount of signal for each one of the different components at 38 deg, 10¹⁹ eV.

component	scaling	signal
0) Total Signal		38.3 VEM
1) Pure EM	EM	15.8 VEM
2) Pure μ	hadronic	16.6 VEM
 EM from low-E π₀ 	hadronic	4.4 VEM
 μ from Photoprod. 	$_{\mathrm{EM}}$	1.3 VEM
5) EM from μ decay	\sim hadronic	1.0 VEM

IPC 2022,

No energy rescaling is needed

•The observed muon signal is a factor 1.3 to 1.6 larger than predicted by models

Model	R_E	$R_{ m had}$
QII-04 p	$1.09 \pm 0.08 \pm 0.09$	$1.59 \pm 0.17 \pm 0.09$
QII-04 mixed	$1.00 \pm 0.08 \pm 0.11$	$1.61 \pm 0.18 \pm 0.11$
EPOS p	$1.04 \pm 0.08 \pm 0.08$	$1.45 \pm 0.16 \pm 0.08$
EPOS mixed	$1.00 \pm 0.07 \pm 0.08$	$1.33 \pm 0.13 \pm 0.09$

Underground Muon Detector

30 m² scintillators buried 2.3 m below surface at 7 WCD locations

Working Group on Hadronic Interactions and Shower Physics

EuNPC 2022, Santiago 21

Muon Fluctuations

Fluctuations are sensitive to the first interation.

Muon average number missmatch cannot be explained solely due to a missmath in the 1st interaction.

Auger Collab. PRL 126 (2021) 15

Preliminary: Models predict too deep $< X_{max} >$

Conclusions

- σ_{p-Air} for particle production
- Muon Production Depth missmath provides further constraints in hadronic models
- Measurements of muon production
 - Muon rescaling factor 1.3-1.6
 - Also models present less muon number derivative wrt energy
 - WHISP confirms high significance. Missmath starts around 1E16 eV
- Intense Theoretical/phenomenological activity
 - Quark Gluon Plasma Core Corona effect
 - Strange fireball

— ...

Many Tanks