Ge 61	Ge 62	Ge 63	Ge 64	Ge 65
44 ms	129 ms	142 ms	64 s	31 s
				β+ 4.6, 5.2
B+	B+		β ⁺ 3.0, 3.3	γ 650, 62, 809 191
βp 3.12	βр	β+		βp 1.28
Ga 60	Ga 61	Ga 62	Ga 63	Ga 64
70 ms	167 ms	116.121 ms	31.4 s	2.62 m
β+ 8.5, 12.4				
γ 1004, 3848	β ⁺ 8.2 γ 88, 418, 123	β ⁺ 8.2 γ (954)	β ⁺ ~4.5 γ 637, 627, 193	β ⁺ 2.9, 6.1 γ 992, 808, 336€
β p βα?	755	βp	650	1387, 2195
Zn 59	Zn 60	Zn 61	Zn 62	Zn 63
178.6 ms	2.38 m	89.1 s	9.193 h	38.1 m
β+ 8.1			ε	
γ 491, 914 βp 1.79, 2.09	β+ 2.5, 3.1	β+ 4.6	β+ 0.6	β+ 2.3
1.82, 1.38	γ 670, 61, 273 334	γ 475, 1660 970	γ 597, 41, 548 508	γ 670, 962 1412

Spectroscopic investigation of low-lying T=0,1 states in self-conjugate ⁶²Ga

Radu Emanuel Mihai

Contents

- Scientific motivation
- Previous knowledge
- Experiment
- Analysis and results
- Conclusions
- Acknowledgements

Scientific motivation

- The nuclear force does not distinguish between proton and neutron
- Corresponding quantum number: Isospin (T)
- In general, the most energetically favored states have $T = T_7$
- Notable exception: odd-odd N = Z nuclei → coexistence of both T=0 and T=1 states at low excitation energies
- Understanding the existence of isospin breaking terms within the shell model approach → study of isovector (differences between mirror nuclei) and isotensor terms (triplet energy differences -TED)

Scientific motivation

- The nuclear force does not distinguish between proton and neutron
- $TED_J = E_{J,T,T_z=-1}^* + E_{J,T,T_z=+1}^* 2E_{J,T,T_z=0}^*,$

- Corresponding quantum number: Isospin (T)
- In general, the most energetically favored states have $T = T_7$
- Notable exception: odd-odd N = Z nuclei → coexistence of both T=0 and T=1 states at low excitation energies
- Understanding the existence of isospin breaking terms within the shell model approach → study of isovector (differences between mirror nuclei) and isotensor terms (triplet energy differences -TED)

Scientific motivation

- The nuclear force does not distinguish between proton and neutron
- Corresponding quantum number: Isospin (T)
- In general, the most energetically favored states have $T = T_7$
- Notable exception: odd-odd N = Z nuclei → coexistence of both T=0 and T=1 states at low excitation energies
- Understanding the existence of isospin breaking terms within the shell model approach → study of isovector (differences between mirror nuclei) and isotensor terms (triplet energy differences -TED)

$$TED_J = E_{J,T,T_z=-1}^* + E_{J,T,T_z=+1}^* - 2E_{J,T,T_z=0}^*,$$

Taken from T.W. Henry et al, Phys. Rev. C 92, 024315 (2015).

▶ [1] Proposal of a T=1, 2⁺ state at 1017 keV

- ▶ [I] Proposal of a T=1, 2⁺ state at 1017 keV
- [2] The 2^+ assignment for the 1017-keV state is kept; a new 979-keV level was observed and given a 1^+ assignment ($R_{32/90} = 0.77(25)$)

Previous papers on ⁶²Ga

- ▶ [I] Proposal of a T=1, 2⁺ state at 1017 keV
- [2] The 2^+ assignment for the 1017-keV state is kept; a new 979-keV level was observed and given a 1^+ assignment ($R_{32/90} = 0.77(25)$)
- ▶ [3] Both direct transitions were observed, but given a (I⁺) and I⁺ assignment (GT)

- ▶ [I] Proposal of a T=1, 2⁺ state at 1017 keV
- [2] The 2^+ assignment for the 1017-keV state is kept; a new 979-keV level was observed and given a 1^+ assignment ($R_{32/90} = 0.77(25)$)
- ▶ [3] Both direct transitions were observed, but given a (I⁺) and I⁺ assignment (GT)
- ▶ [4] While 977-keV transition was observed, the 1017-keV one was not; Due to fractional TED incompatibilities, the level at 977(2) keV was proposed as the first T=1, 2⁺

- ▶ [I] Proposal of a T=1, 2⁺ state at 1017 keV
- [2] The 2^+ assignment for the 1017-keV state is kept; a new 979-keV level was observed and given a 1^+ assignment ($R_{32/90} = 0.77(25)$)
- ▶ [3] Both direct transitions were observed, but given a (I+) and I+ assignment (GT)
- ▶ [4] While 977-keV transition was observed, the 1017-keV one was not; Due to fractional TED incompatibilities, the level at 977(2) keV was proposed as the first T=1, 2⁺
- ▶ [5] Both transitions were observed, as in [3], good statistics, I⁺ maintained (GT)

Experiment

▶ Set-up: ROSPHERE (10 HPGe, 11 LaBr₃(Ce), 28 neutron detectors)

► Target : 5 mg/cm² ⁵⁸Ni / 5 mg/cm² Au backing;

▶ Beam : ⁶Li @ 22 MeV – 1.5 nA intensity

Reaction: 58 Ni(6 Li, 2 n) 62 Ga with $\sigma_{2n} \sim 5$ mb

• Total $\sigma_{\text{fusion}} \approx 500 \text{ mb}$

3D schematic of the ROSPHERE setup configured for this experiment

Experiment

Neutron filter

TABLE I. A listing of 62 Ga transitions and their relative intensities observed in this work. Values noted with an asterisk are estimated using γ -ray coincidences.

E_x (keV)	$E_{\gamma}(\text{keV})$	$I_{\rm rel}~(\%)$	$]I_i^\pi$	I_f^π
571.2(1)	571.2(1)	100(3)	1+	0+
817.3(1)	246.0(1)	61(2)	3+	1+
978.1(1)	978.1(1)	27(2)	2+	0_{+}
1072.5(1)	501.3(1)	5(2)*		1+
1161.0(1)	589.8(1)	20(2)*	2+	1+
1193.8(2)	376.5(1)	37(2)	5+	3+
1352.0(1)	780.8(1)	6(3)*		1+
1439.2(2)	621.9(2)	20(6)	4+	3+
1574.3(1)	1003.1(1)	4(1)*	$(2,3)^+$	1+
1850.2(3)	1032.9(3)	3(1)*	,	3+
2374.4(3)	1180.6(2)	10(4)*	6^{+}	5+
2434.8(3)	1241.0(2)	33(7)*	7+	5+

Level scheme constructed from observed transitions in current work

- Intensities had to be corrected for detector efficiencies
- Prior to the experiment, ¹⁵²Eu source runs were taken
- The energetically closest transition \rightarrow 963 keV (1⁻ \rightarrow 2⁺) in ¹⁵²Sm
- $R_{90^{\circ}/(37^{\circ}+143^{\circ})} \times R_{eff(964keV)} = 0.80(13)$
- Similar treatment for the four neighboring transitions, good agreement with literature

- Intensities had to be corrected for detector efficiencies
- Prior to the experiment, ¹⁵²Eu source runs were taken
- The energetically closest transition \rightarrow 963 keV (I⁻ \rightarrow 2⁺) in ¹⁵²Sm
- $R_{90^{\circ}/(37^{\circ}+143^{\circ})} \times R_{eff(964keV)} = 0.80(13)$
- Similar treatment for the four neighboring transitions, good agreement with literature

TABLE II. Angular anisotropy ratio values $(R_{90^{\circ}/(37^{\circ}+143^{\circ})})$ along with the multipolarities (M_{γ}) determined for transitions observed in this study.

Nucleus	$E_{\gamma}(\text{keV})$	$I_i^\pi o I_f^\pi$	R _{90°/(37°+143°)}	M_{γ}
⁶² Zn	953.75(2)	$2^+ \rightarrow 0^+$	0.84(3)	Q
62 Zn	1857.5(4)	$(5)^- \to 4^+$	1.26(4)	D
⁶² Ga	978.1(1)	$2^+ \rightarrow 0^+$	0.80(13)	Q
⁶² Cu	980.5(2)	$5^+ \rightarrow 4^+$	1.91(14)	D+Q
⁶¹ Cu	984.3(2)	$9/2^- \to 7/2^-$	1.73(16)	D+Q
⁶¹ Cu	987.6(1)	$9/2^+ \to 7/2^-$	1.37(17)	D
⁶⁴ Zn	991.5(1)	$2^+ \rightarrow 0^+$	0.99(9)	Q

- Intensities had to be corrected for detector efficiencies
- Prior to the experiment, ¹⁵²Eu source runs were taken
- The energetically closest transition \rightarrow 963 keV (1⁻ \rightarrow 2⁺) in ¹⁵²Sm
- $R_{90^{\circ}/(37^{\circ}+143^{\circ})} \times R_{eff(964keV)} = 0.80(13) \rightarrow quadrupole \rightarrow 2_{1}^{+} at 978 \text{ keV}$
- Similar treatment for the four neighboring transitions, good agreement with literature

Taken from T.W. Henry et al, Phys. Rev. C 92, 024315 (2015).

TABLE II. Angular anisotropy ratio values $(R_{90^{\circ}/(37^{\circ}+143^{\circ})})$ along with the multipolarities (M_{γ}) determined for transitions observed in this study.

Nucleus	$E_{\gamma}(\text{keV})$	$I_i^\pi o I_f^\pi$	R _{90°/(37°+143°)}	M_{γ}
⁶² Zn	953.75(2)	$2^{+} \rightarrow 0^{+}$	0.84(3)	Q
62 Zn	1857.5(4)	$(5)^- \to 4^+$	1.26(4)	D
⁶² Ga	978.1(1)	$2^+ \rightarrow 0^+$	0.80(13)	Q
⁶² Cu	980.5(2)	$5^+ \rightarrow 4^+$	1.91(14)	D+Q
⁶¹ Cu	984.3(2)	$9/2^- \to 7/2^-$	1.73(16)	D+Q
⁶¹ Cu	987.6(1)	$9/2^+ \to 7/2^-$	1.37(17)	D
⁶⁴ Zn	991.5(1)	$2^+ \rightarrow 0^+$	0.99(9)	Q

- Intensities had to be corrected for detector efficiencies
- Prior to the experiment, ¹⁵²Eu source runs were taken
- The energetically closest transition \rightarrow 963 keV (I⁻ \rightarrow 2⁺) in ¹⁵²Sm
- $R_{90^{\circ}/(37^{\circ}+143^{\circ})} \times R_{eff(964keV)} = 0.80(13) \rightarrow quadrupole \rightarrow 2_{1}^{+} at 978 \text{ keV}$
- Similar treatment for the four neighboring transitions, good agreement with literature

Taken from T.W. Henry et al, Phys. Rev. C 92, 024315 (2015).

TABLE II. Angular anisotropy ratio values $(R_{90^{\circ}/(37^{\circ}+143^{\circ})})$ along with the multipolarities (M_{γ}) determined for transitions observed in this study.

Nucleus	$E_{\gamma}(\text{keV})$	$I_i^\pi o I_f^\pi$	R _{90°/(37°+143°)}	M_{γ}
⁶² Zn	953.75(2)	$2^{+} \rightarrow 0^{+}$	0.84(3)	Q
62 Zn	1857.5(4)	$(5)^- \to 4^+$	1.26(4)	D
⁶² Ga	978.1(1)	$2^+ \rightarrow 0^+$	0.80(13)	Q
⁶² Cu	980.5(2)	$5^+ \rightarrow 4^+$	1.91(14)	D+Q
⁶¹ Cu	984.3(2)	$9/2^- \to 7/2^-$	1.73(16)	D+Q
⁶¹ Cu	987.6(1)	$9/2^+ \to 7/2^-$	1.37(17)	D
⁶⁴ Zn	991.5(1)	$2^+ \rightarrow 0^+$	0.99(9)	Q

Acknowledgements

PHYSICAL REVIEW C 106, 024332 (2022)

Search for isospin-symmetry breaking in the A = 62 isovector triplet

R. E. Mihai , A. S. Mare , R. E. Mărginean , A. Petrovici , R. C. Chisu, A. S. Mare , R. E. Mărginean , A. Petrovici , R. C. Chisu, C. Costache, I. Dinescu, D. Filipescu, N. Florea, I. Gheorghe, A. Ionescu, R. Lică, R. Mărginean, C. Mihai, A. Mitu, A. Negret, C. R. Niţă, A. Olăcel, A. Oprea, S. Pascu, A. Şerban, C. Sotty, L. Stan, R. Şuvăilă, S. Toma, A. Turturică, S. Ujeniuc, and C. A. Ur

**Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, Bucharest, 077125, Romania

**Faculty of Physics, University of Bucharest, R-077125 Bucharest, Romania

**GERN, CH-1211 Geneva 23, Switzerland

**IFIN-HH/ELI-NP, 077125 Bucharest, Romania

Acknowledgements

PHYSICAL REVIEW C 106, 024332 (2022)

Search for isospin-symmetry breaking in the A = 62 isovector triplet

```
R. E. Mihai , A. S. Mare , R. E. Mărginean , A. Petrovici , R. C. Chisu, A. S. Mare , R. E. Mărginean , A. Petrovici , R. C. Chisu, A. S. Mare , R. Lică, A. Mărginean, A. Petrovici , R. C. Chisu, A. C. Costache, I. Dinescu, D. Filipescu, N. Florea, I. Gheorghe, A. Ionescu, R. Lică, R. Mărginean, C. Mihai, A. Mitu, A. Negret, C. R. Niţă, A. Olăcel, A. Oprea, S. Pascu, A. Şerban, C. Sotty, L. Stan, R. Şuvăilă, S. Toma, A. Turturică, S. Ujeniuc, and C. A. Ur 

**Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, Bucharest, 077125, Romania

**Faculty of Physics, University of Bucharest, R-077125 Bucharest, Romania

**GERN, CH-1211 Geneva 23, Switzerland

**IFIN-HH/ELI-NP, 077125 Bucharest, Romania
```

Thank you for your attention

A.S. Mare A. Petrovici adrian.mare@nipne.ro spetro@nipne.ro

Isospin symmetry breaking in the A=62 isovector triplet

Superallowed Fermi β decay within the triplet

Mirror Energy Differences (MED)

Triplet Energy Differences (TED)

Realistic description of the interplay between isospin-symmetry breaking and shape coexistence and mixing effects in the frame of the beyond-mean-field complex Excited Vampir model using a strong charge dependent interaction plus Coulomb interaction in a large model space.

